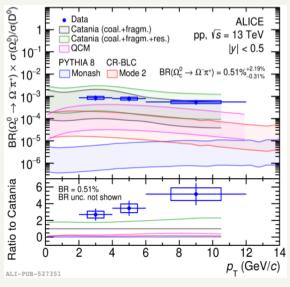
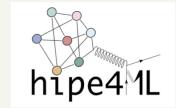


Measurement of branching-fraction ratio $BR(\Omega_c^{~0} \to \Omega^- e^+ \nu_e)/BR(\Omega_c^{~0} \to \Omega^- \pi^+) \text{ at ALICE}$


<u>Tiantian Cheng (CCNU & GSI)</u>, Zhongbao Yin (supervisor)
<u>tiantian.cheng@cern.ch</u>
November 17th 2023

Motivation

- Result $\Omega_e^{\ 0} \rightarrow \Omega^- \pi^+ \text{ in pp } 13 \text{ TeV}$
 - \circ The $p_{\rm T}$ trend of the baryon-to-meson ratio is similar as other baryons $(\Lambda_c^+, \Xi_c^{0,+}, \Sigma_c^{0,++})$
 - \circ The value of BR($\Omega_c^{\ 0} \to \Omega^- \pi^+$) from theoretical calculation limits the possibility of drawing stronger conclusions


■ BR(
$$\Omega_c^{\ 0} \to \Omega^- \pi^+$$
) = (0.51 ± 0.07)%

	$BR(\Omega_{c}{}^0 o \Omega^- e^+ v_{e}) / BR(\Omega_{c}{}^0 o \Omega^- \pi^+)$		
CLEO Collaboration	2.4 ± 1.2(stat.) ± 0.2(syst.) (paper link)		
BELLE Collaboration	1.98 ± 0.13(stat.) ± 0.08(syst.) (paper_link)		
Theory	0.71 (paper_link)		
	1.1 ± 0.2 (<u>paper_link</u>)		

• Goal: provide our measurement of $BR(\Omega_e^{\ 0} \to \Omega^- e^+ \nu_e)/BR(\Omega_e^{\ 0} \to \Omega^- \pi^+)$

Analysis strategy

- The KFParticle package is used
 - Only used for the reconstruction of cascade
- Boosted Decision Trees are used
 - XGboost and hipe4ml package
 - Optimisation of hyperparameters with Optuna
- Raw yield extraction
- MC p_{T} re-weight
- Unfolding technique
- Efficiency correction
- Systematic study

	p _T (GeV/c)	2-4	4-6	6-12
Candidates for training: Signal (S): pure MC signal	Prompt	49705	54126	41341
Background (B): Same event wrong sign (SE(WS))	Background	43832	24402	9366

Cuts vairbales	cuts	
AOD Filter Bit	4(Standard cuts with very loose DCA)	
Number of CrossedRows	>70	
CrossedRows Over Findable Cluster	>0.8	
Number of TPC PID clusters	>50	
Number of ITS cluster	>3	
ITS/TPC refit	TRUE	
p _T ^e (GeV/c)	>0.5	
η	< 0.8	
SPD hit	kBoth (suppress photon conversion)	
prefilter cut	$m_{e^+e^-} < 0.05 \text{ GeV}/c^2$	

Table 2: Tracking cuts for e applied in this analysis.

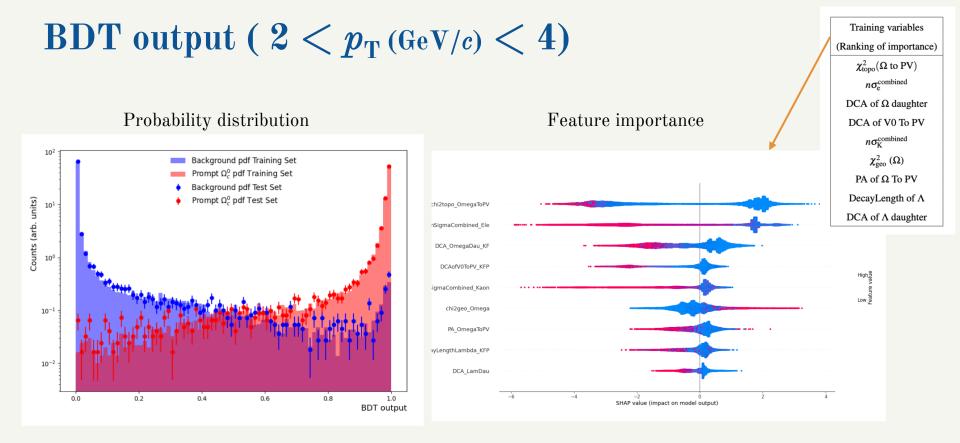
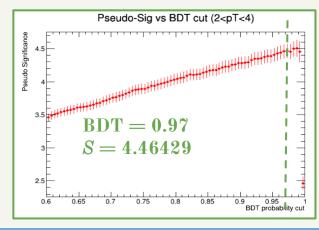

Cuts variables	cuts
Number of CrossedRows	>70
CrossedRows Over Findable Cluster	>0.8
Number of TPC PID clusters	>50

Table 4: The tracking cuts for Ω daughters applied in this analysis.

Cuts variables	$2 < p_{\rm T} ({\rm GeV}/c) < 4$	$4 < p_{\rm T} ({\rm GeV}/c) < 6$	$6 < p_{\rm T} ({\rm GeV}/c) < 12$
$n\sigma_{\text{TOF}}(K\leftarrow\Omega)$	-999 or(-5, 5)	-999 or(-5, 5)	-999 or(-5, 5)
$n\sigma_{\text{TOF}}(e)$	(-5, 5)	(-5, 5)	(-5, 5)
$n\sigma_{\mathrm{TPC}}(\mathrm{e})$	(-4, 4)	(-4, 4)	(-4, 4)
CosOA	>0	>0.25	>0.5
$\chi^2_{\rm topo}(\Omega \text{ to PV})$	>0	>0	>0

Table 5: The further pre-selections applied in this analysis.

Note: Electron-candidate tracks without TOF PID information are **not** included in this analysis, as it will bring huge contamination from other hadrons

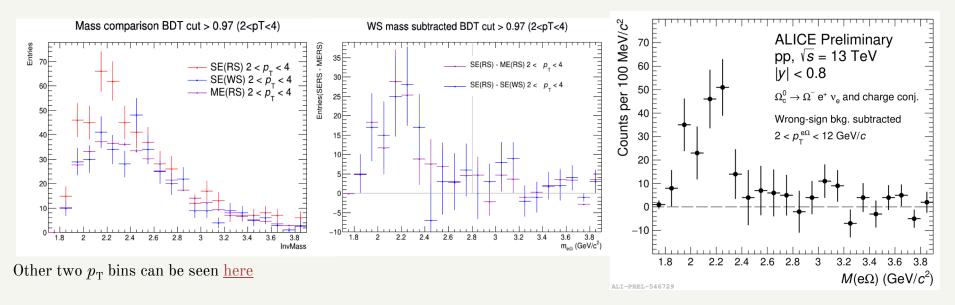

• The plots for other $p_{\rm T}$ bins can be seen <u>here</u>

Working point determination

- Expected signal (s): obtained from hadronic result (<u>HEPData</u>)
 - The result is BR * $d\sigma/dp_T dy$
 - Assumption: same ratio as Ξ_c^0 BR_Semi/BR_Hadr: 1.38 ± 0.14 (stat.) ± 0.22 (syst)(paper link)

$$N_{\Omega_{c}^{0}} = 2 \cdot (\frac{d\sigma}{dp_{T}dy}) \cdot \Delta y \cdot \Delta p_{T} \cdot (Acc \times \varepsilon) \cdot L_{int} \cdot BR_{semi} = 2 \cdot (\frac{d\sigma}{dp_{T}dy} \cdot BR_{hadr}) \cdot \Delta y \cdot \Delta p_{T} \cdot (Acc \times \varepsilon) \cdot L_{int} \cdot \frac{BR_{semi}}{BR_{hadr}}$$

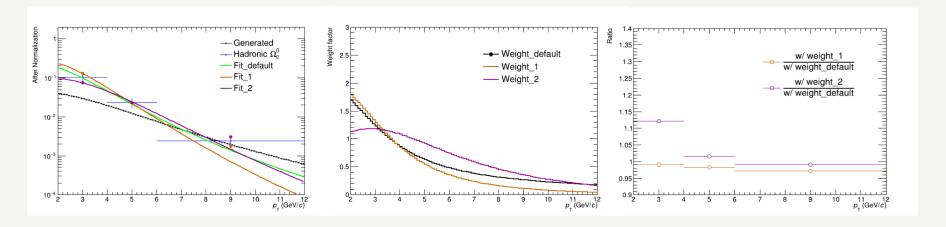
- Background (b): Wrong-Sign (WS) in Same-Event
- Efficiency: $\varepsilon = Acc \times \varepsilon_{preselection} \times \varepsilon_{BDT}$:
 - Preselection efficiency: Acc $\times \epsilon_{\text{preselection}} = \text{MC(Reco)/MC(Gen)}$
 - |y| < 0.8
 - $\circ \quad BDT \text{ efficiency:} \epsilon_{BDT} = MC(Reco)_{w/BDT \text{ cut}} / MC(Reco)_{w/o BDT \text{ cut}}$
- Pseudo-significance: $S = s/\sqrt{(s+b)}$
 - Estimation of the significance expected in data
 - It is used to find the working point
 - Helps to reduce the bias on the BDT cut tuning
 - The distribution for other p_T bins seen <u>here</u>

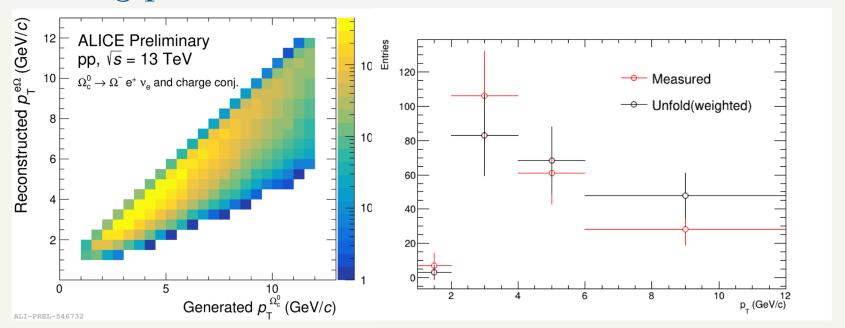


Comparison mass distribution

SE(WS): Same event wrong sign $(e^{\pm}\Omega^{\pm})$

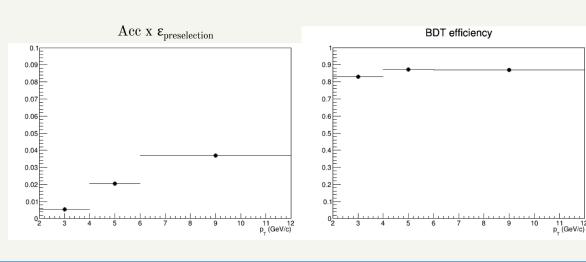
SE(RS): Same event right sign ($e^{\pm}\Omega^{\mp}$)

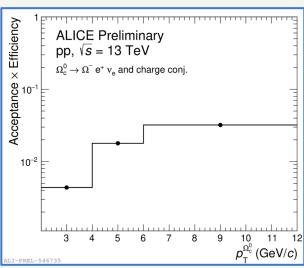

ME(RS): Mixed event right sign $(e^{\pm}\Omega^{\mp})$


- The idea of mixed event is to create pairs of tracks to mimic uncorrelated background
 - \circ The tracks of pairs (e and Ω) should be from different events with similar mult. and z_{vtx} position
- The distributions from Mixed-Event (ME), are compatible with SE(WS)
- The SE(WS) is used for the background subtraction in this analysis

$MC p_T$ re-weight

- The **PYTHIA** $\Omega_c^{\ 0}$ p_T spectrum poorly describes the measured p_T spectrum of the **hadronic** decay channel
 - \circ Reweighting the MC $p_{\rm T}$ spectrum is needed to better match nature
- Weight factor is obtained using a Tsallis fit to the hadronic $\Omega_c^{\ 0}$ spectrum
 - Green one is chosen for the central weighting strategy
 - Other two fits are used to assign systematic uncertainty


Unfolding procedure

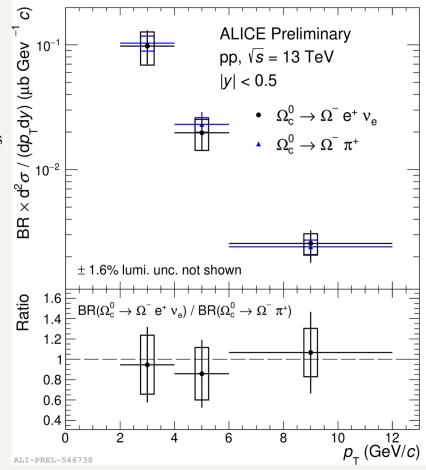


- The correction for the missing momentum of the neutrino performed by the **Bayesian unfolding technique**
 - \circ The response matrix represents the correlation between the $p_{\rm T}$ of the $\Omega_{\rm c}^{\ 0}$ baryon and that of the reconstructed e Ω pair
- The p_T weight is applied to the response matrix
- The refold procedure is done to check the stability of the unfolding procedure
- The weighted unfolded yield of Ω_e^0 (black color) is used to correct for acceptance-times-efficiency

Reconstruction efficiency

- The p_{T} weight is applied
- Reconstruction efficiency: $\epsilon = \operatorname{Acc} \times \epsilon_{preselection} \times \epsilon_{BDT}$:
 - Preselection efficiency: $Acc \times \varepsilon_{preselection} = MC(Reco)/MC(Gen)$
 - |y| < 0.8
 - $\circ \quad \mathrm{BDT} \; \mathrm{efficiency:} \; \epsilon_{\mathrm{BDT}} = \mathrm{MC(Reco)_{w/\; \mathrm{BDT} \; \mathrm{cut}}} / \mathrm{MC(Reco)_{\; w/o \; \mathrm{BDT} \; \mathrm{cut}}}$

Systematic uncertainty estimation


- The various contributions of systematic uncertainties are summed in quadrature
 - O Yield extraction: eΩ Mass cut
 - ITS-TPC matching
 - Track quality selection
 - Unfolding procedure
 - Bayesian-unfolding iterations
 - Unfolding method
 - Unfolding $p_{\rm T}$ binning
 - o BDT cut variations
 - \circ MC $p_{\rm T}$ shape

p _T (GeV/c)	2–4	4–6	6–12
$e\Omega$ pair mass	10%	10%	10%
ITS-TPC matching	2%	2%	2%
Track quality selection	4%	4%	4%
Bayesian-unfolding iterations	4%	4%	4%
Unfolding method	4%	4%	4%
Response-matrix p_T range and binning	20%	20%	-
BDT cut variation	15%	15%	15%
MC $p_{\rm T}$ shape	10%	2%	1%
Total systematic uncertainty	± 30%	$\pm~28\%$	± 19%
Luminosity		1.6%	

Table 14: The Summary of the systematic uncertainties in this analysis.

Final result comparison

- First comparison of two different decay channels at ALICE
 - Correlated systematics between the two analysis
 - ITS-TPC matching
 - Track quality selection
 - \blacksquare MC $p_{\rm T}$ shape
 - Lumi. uncertainties fully cancel in the ratio
- The measurement of branching-fraction $BR(\Omega_c^{\ 0} \to \Omega^- e^+ \nu_e) / BR(\Omega_c^{\ 0} \to \Omega^- \pi^+)$ is obtained

Weighted average of the 3 p_{T} intervals

• The ratio of the two measurements was averaged over p_T using the inverse uncorrelated relative uncertainties as weights (\underline{link})

The weights were defined as the sum in quadrature of the relative statistical and the p_{T} -uncorrelated

part of the syst. unc.

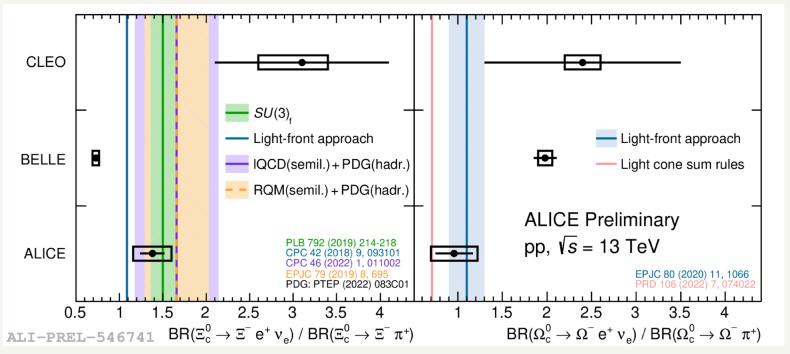
Weights:

$$\left\langle \boldsymbol{w}_{i} = \sqrt{\left(\frac{\sigma_{i}^{\text{stat}}}{R_{i}}\right)^{2} + \left(\frac{\sigma_{i}^{\text{pTuncorr}}}{Y_{i}}\right)^{2}} \right. \\ \left\langle \boldsymbol{\sigma}_{\text{stat}} \right\rangle_{\text{pT}} = \frac{\sum_{i} \left(R_{i} \cdot \frac{1}{w_{i}^{2}}\right)}{\sum_{i} \left(\frac{1}{w_{i}^{2}}\right)^{2}} \\ \left\langle \boldsymbol{\sigma}_{\text{syst}}^{\text{pTuncorr}} \right\rangle_{\text{pT}} = \frac{\sqrt{\sum_{i} \left(\sigma_{i}^{\text{stat}} \cdot \frac{1}{w_{i}^{2}}\right)^{2}}}{\sum_{i} \left(\frac{1}{w_{i}^{2}}\right)} \\ \left\langle \boldsymbol{\sigma}_{\text{syst}}^{\text{pTuncorr}} \right\rangle_{\text{pT}} = \left\langle R \right\rangle_{\text{pT}} \cdot \sqrt{\left(\frac{\left\langle R^{\text{pTcorr}}_{\text{down;hadro}}\right\rangle_{\text{pT}}}{\left\langle R \right\rangle_{\text{pT}}} - 1\right)^{2} + \left(\frac{\left\langle R^{\text{pTcorr}}_{\text{up;semil}}\right\rangle_{\text{pT}}}{\left\langle R \right\rangle_{\text{pT}}} - 1\right)^{2}} \\ \left\langle \boldsymbol{\sigma}_{\text{syst}}^{\text{pTcorr}} \right\rangle_{\text{pT}} = \left\langle R \right\rangle_{\text{pT}} \cdot \sqrt{\left(\frac{\left\langle R^{\text{pTcorr}}_{\text{up;hadro}}\right\rangle_{\text{pT}}}{\left\langle R \right\rangle_{\text{pT}}} - 1\right)^{2} + \left(\frac{\left\langle R^{\text{pTcorr}}_{\text{down;semil}}\right\rangle_{\text{pT}}}{\left\langle R \right\rangle_{\text{pT}}} - 1\right)^{2}} \\ \left\langle \boldsymbol{\sigma}_{\text{syst}}^{\text{pTcorr}} \right\rangle_{\text{pT}} = \max[\left\langle \boldsymbol{\sigma}_{\text{syst}}^{\text{pTcorr}} \right\rangle_{\text{pT}} \cdot \left\langle \boldsymbol{\sigma}_{\text{syst}}^{\text{pTcorr}} \right\rangle_{\text{pT}} \right]$$

Same procedure was performed Ξ_c^0 paper, (slides)

Semileptonic:

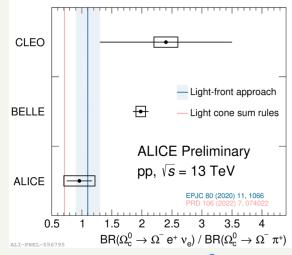
All the systematic sources are considered as p_{T} correlated


Hadronic:

MC $p_{\rm T}$ shape, BDT cut variation, track quality selection and ITS-TPC matching (all except raw-yield extraction) are considered as $p_{\rm T}$ correlated

The $p_{\rm T}$ -correlated syst. unc. were propagated by recomputing the ratio after shifting up and down the ratios with the corresponding $p_{\rm T}$ -correlated syst. unc.

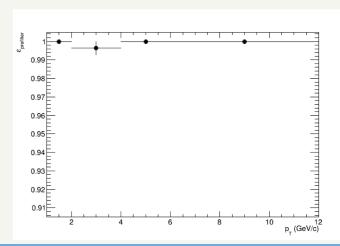
BR ratios comparison:

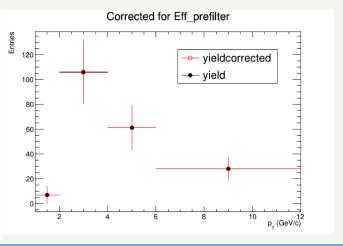

- $n\sigma$ difference between ALICE and BELLE:
 - For Ξ_c^0 : 2.5 σ
 - For Ω_e^0 : 2.7 σ

- \rightarrow ALICE: 0.96 ± 0.21 (stat.) ± 0.28 (syst.)
- → Belle: 1.98 ± 0.13 (stat.) ± 0.08 (syst.)

- The production of the charm-strange baryon Ω_e^0 in its semileptonic decay channel $(\Omega_e^0 \to \Omega^- e^+ \nu_e)$ is measured for its first time in ALICE
- The ratio of BR($\Omega_c^0 \to \Omega^- e^+ \nu_e$) /BR($\Omega_c^0 \to \Omega^- \pi^+$) is measured in ALICE
 - \circ There is about 2.7 σ tension compared with the one from BELLE collaboration
 - Our result is fully compatible with the theory results

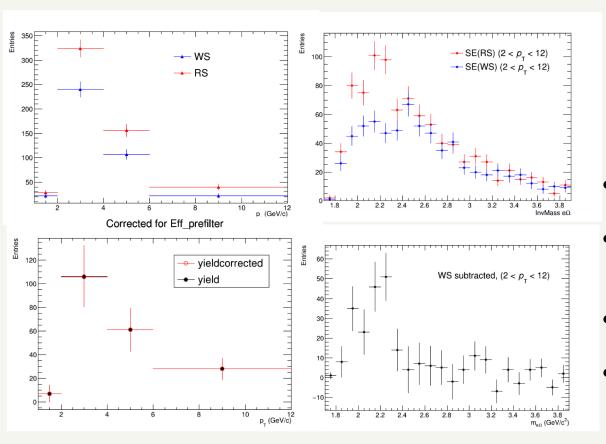
- ➤ After preliminary, the ME used as bkg
 - Effects of 10% on the raw yield extraction
 - ➤ Improve the relative statistical error about 20-25%
- ➤ Paper proposal was on 15th Nov.(<u>link</u>)

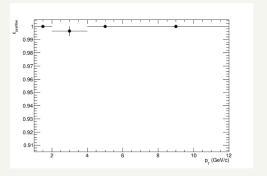

Thanks for your attention


ADDITIONAL SLIDES

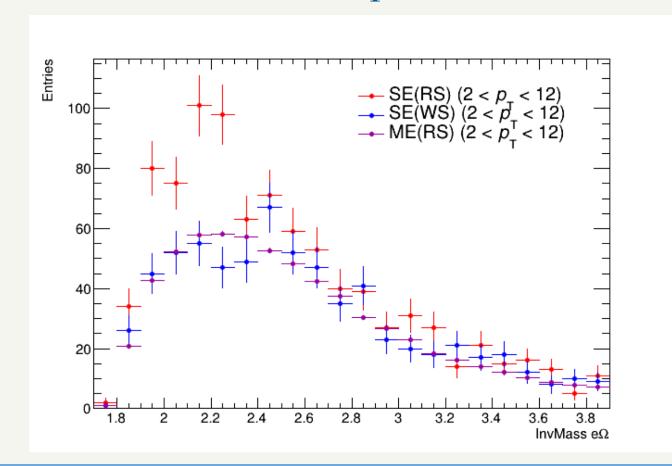
Prefilter correction

- Non-HF electrons are mainly from γ conversion or Dalitz decays, which can be removed by using electron pair mass cut (called 'prefilter')
 - There is a probability of wrongly tagging an electron as photonic
- The prefilter efficiency is calculated using real data, to correct for the 'missing' electrons:
 - It is a very minimal effect

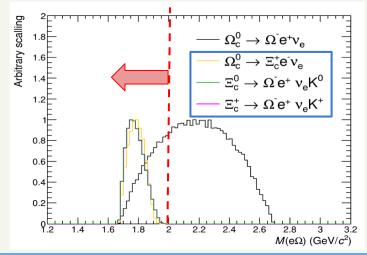

$$arepsilon_{ ext{prefilter}} = rac{N_{ ext{e}\Omega}(ext{same sign prefilter on})}{N_{ ext{e}\Omega}(ext{ prefilter off})}$$



Yield and mass distribution

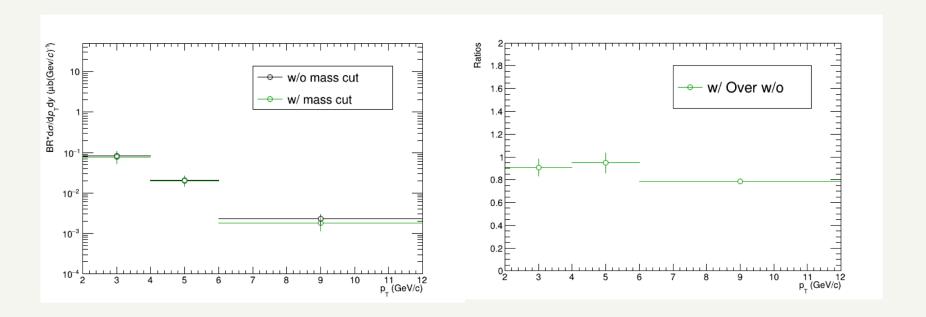

To correct the wrong tagging for ele

- Top left: The p_{T} distributions of WS and RS e Ω pairs
- Top right: The invariant mass distribution of RS and WS eΩ pairs
 - Bottom left: The yield distribution of $p_{\mathrm{T}}^{\mathrm{e}\Omega}$
- Bottom right: The invariant mass distribution of WS $e\Omega$ subtracted

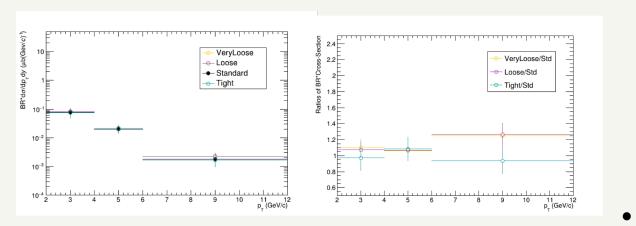

Mass distribution comparison

Systematic study 1): PYTHIA 8 study

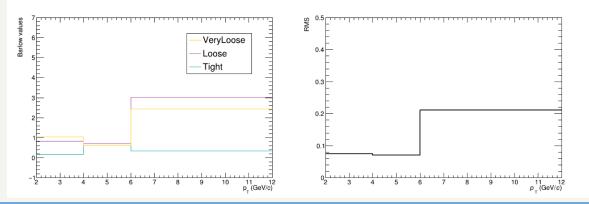
- Investigate possible contaminations to RS $e\Omega$ pairs from other decays
 - There are no guidelines from PDG about possible 'contaminating' decay channels
 - We consider the following three decay channels as contamination [1, 2]
- It shows that there will be clean signal region if the mass cut > 2 is applied
 - Application of mass cut is reported in the next slide


! Belle and CLEO do not perform a correction/apply a selection regarding contaminating decays

^[1] N R Soni*, Proceedings on Nucl. Phys. 60 (2015)


^[2] R.Ammar, et al, CLEO Collaboration, PRL 89.171803

Systematic study 1): Mass cut check: BR x $d\sigma/dp_Tdy$


- The application of a mass cut at 2 GeV/c^2 gives about 10% effect (assigned as systematic)
- There is a big fluctuation at last p_T bin due to lack of statistics
- Study effect of varying the mass cut can be seen in the next slide

Systematic study 1): $e\Omega$ mass mass cut

Cut variable	VeryLoose	Loose	Standard	Tight
$M_{e\Omega} ({\rm GeV}/c^2)$	1.8	1.9	2	2.1

Together with the mass cut check (above slide), 10% is assigned for the systematic

10% for Syst.