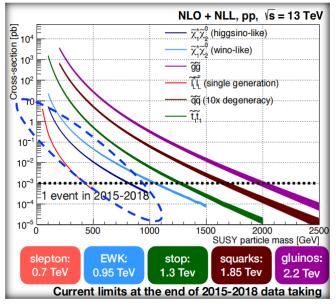
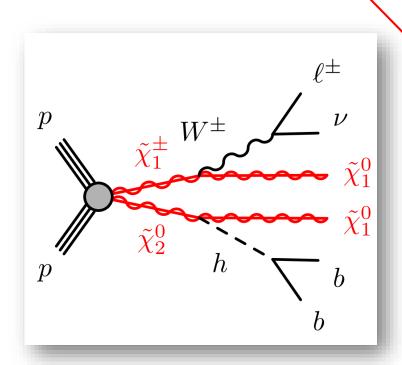
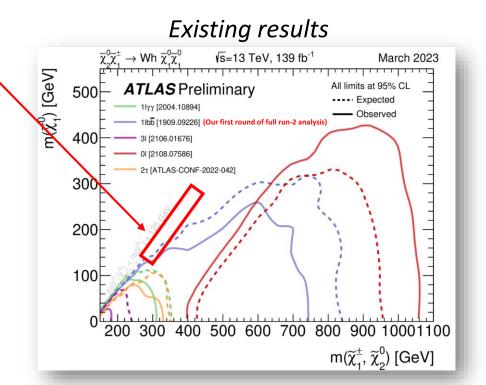

Search for direct production of electroweakinos in final states with one lepton, jets and missing transverse momentum with ATLAS detector


Mingjie Zhai (IHEP, CAS)
CLHCP 2023 (Shanghai, China)
2023.11.18

Introduction

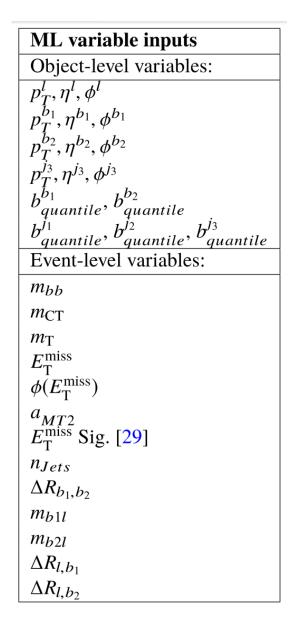
- Standard model (SM):
 - Advantage: Precisely describes the fundamental elements of the matter and the interactions between them.
 - Problems: hierarchy problem, grand unification of gauge couplings, dark matter... -> BSM physics is strongly motivated.
- Supersymmetry (SUSY): one of the most appealing BSM theories.
 - Introduce new symmetry between bosons and fermions.
 - No SUSY particles were discovered so far. -> Limits at LHC.

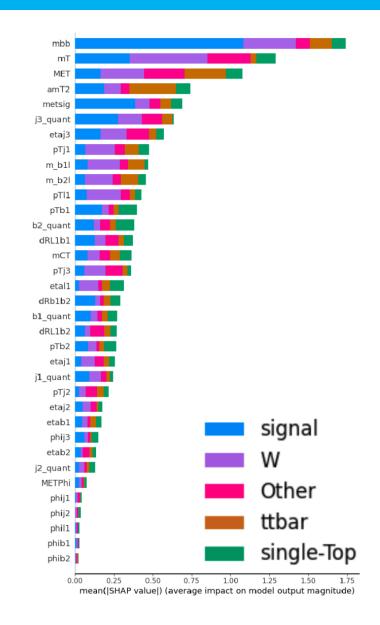




Introduction

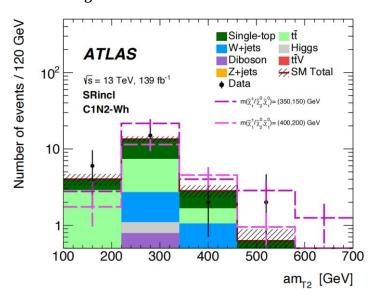
- This presentation focus on electroweakino search targeting direct EWK production of **chargino-neutralino pairs**, decaying **into LSP via W/h boson**.
 - Final state: exactly one isolated lepton (ele or mu), b-jets and large missing transverse momentum.
 - Targeting full Run 2 data of 139 fb⁻¹.

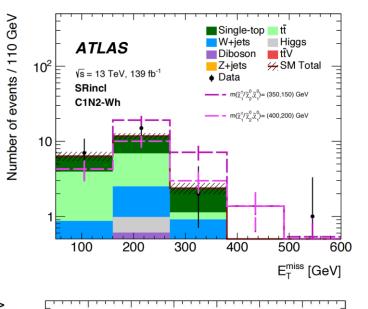

• Target $m_h < \Delta m \ (\chi_1^{\pm}, \chi_1^0) < 250 \ \text{GeV}$

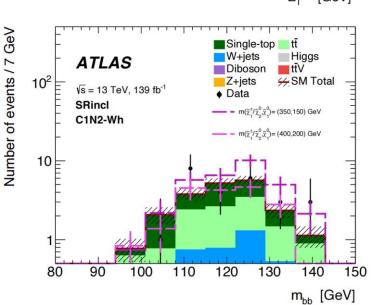

Event Classification: BDT Training

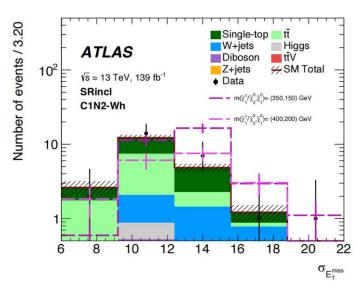
- Use BDT method to classify the events:
 - Framework: XGBoost
 - Input variables: including object-level and event-level variables.
 - Input samples: multiple signal sample (m_h < $\Delta m~(\chi_1^\pm,\chi_1^0)$ < 250 GeV) and SM background sample.
 - Events are classified in *five different categories*: Signal and 4 background processes ($t\bar{t}$, Single-top, W+jets, Other minor background).
 - Trained in 1 vs rest multi-classification procedure. -> better than using a binary signal vs background classifiers.
 - Output: BDTscore (w) for signal and different background.

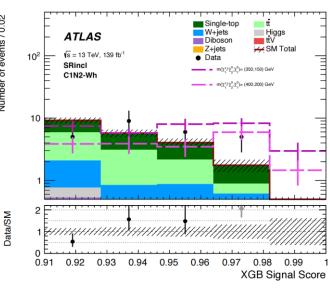
Event Classification: BDT Training

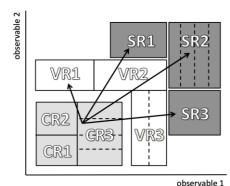

- **Used SHAP** (SHapley Adaptive exPlanations, 2017) 'State of the art for explaining feature importance' to understand the real impact of input features and how they are used in the model
- It evaluates the change in each output score when a feature is considered vs not considered.
- Rather intuitive results for the dominant variables:
 - m_{bb} has the greatest impact in the signal score
 - m_T and $\sigma_{E_T^{miss}}$ also have a large impact in the signal score
 - m_T has the largest impact for the W category, am_{T2} has the largest impact for the ttbar category




Event selection




- Exactly one lepton with P_T > 27 GeV
- 2-3 Jets with P_T > 30 GeV
- Exactly two b-tagged jets
- 90 GeV < m_{bb} < 140 GeV
- $E_T^{miss} > 50 \text{ GeV}$
- $\sigma_{E_T^{miss}} > 8$
- $w_{sig} \in [0.91, 0.928, 0.948, 0.964, 1]$

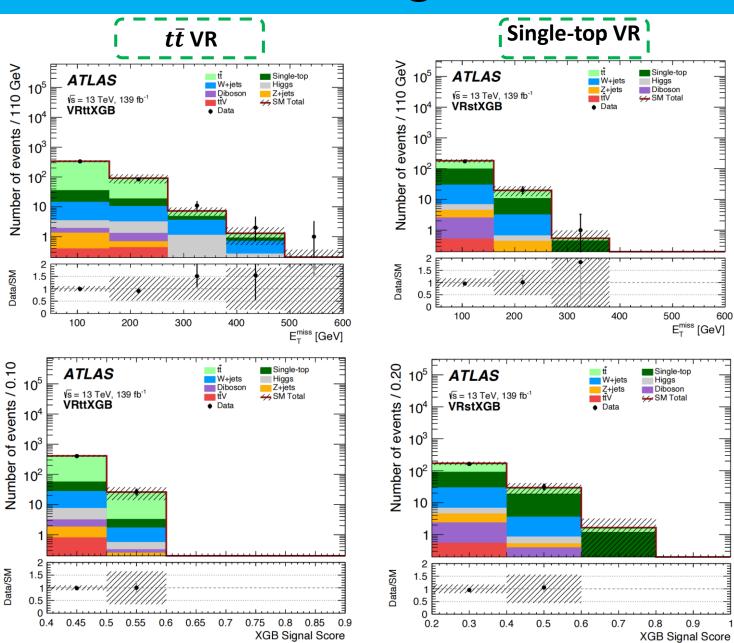


• As expected, events with high w_{sig} score have large E_T^{miss} , $\sigma_{E_T^{miss}}$ and am_{T2} and have m_{bb} close to the mass of higgs.

Background estimation

- Dominant background: $t\bar{t}$ (30% 35%), Single-top(30% 35%), W+jets (15% 20%)
 - Define dedicated CRs to estimate the backgrounds and VRs to validate the estimation.
 - Use BDT score to define corresponding regions.
- Small background: Z+jets, diboson, $t\bar{t}$ + V and Higgs boson production processes

Variable	Regions				
$E_{\rm T}^{\rm miss}$ [GeV]	> 50				
$N_{\text{lep}} (p_{\text{T}} > 27 \text{ GeV})$		1			
$N_{\rm jet}$ ($p_{\rm T} > 30$ GeV)		2–3			
$N_{\rm b-jet} \ (p_{\rm T} > 30 \ {\rm GeV})$		2			
$m_{\rm bb}$ [GeV]		∈ [50, 200]			
$\sigma_{E_{ m T}^{ m miss}}$	> 5				
-	CRtt (CRttXGB)	CR single-top (CRstXGB)	CR W+jets (CRWXGB)		
$w_{\rm sig}$	$\in [0.2, 0.3]$	$\in [0, 0.2]$	∈ [0.0, 0.2]		
w _{tt}	> 0.73	_	-		
$w_{\rm st}$	< 0.2	> 0.45	< 0.2		
$w_{\mathrm{W+jets}}$	< 0.4	_	> 0.65		
-	VR tt (VRttXGB)	VR single-top (VRstXGB)	VR W+jets (VRWXGB)		
$w_{ m sig}$	$\in [0.4, 0.9]$	∈ [0.2, 0.9]	∈ [0.2, 0.9]		
W _{tt}	> 0.4	_	_		
$w_{\rm st}$	< 0.2	> 0.2	< 0.2		
WW+jets	< 0.4	_	> 0.4		



Low w_{sig} to reduce signal contamination.

Use BDTscore cuts for each background to maximize the background purity in corresponding CR.

Higher w_{sig} than CR to approach SR.

Background estimation

The data and the background expectation in all VRs agree well within around 1σ

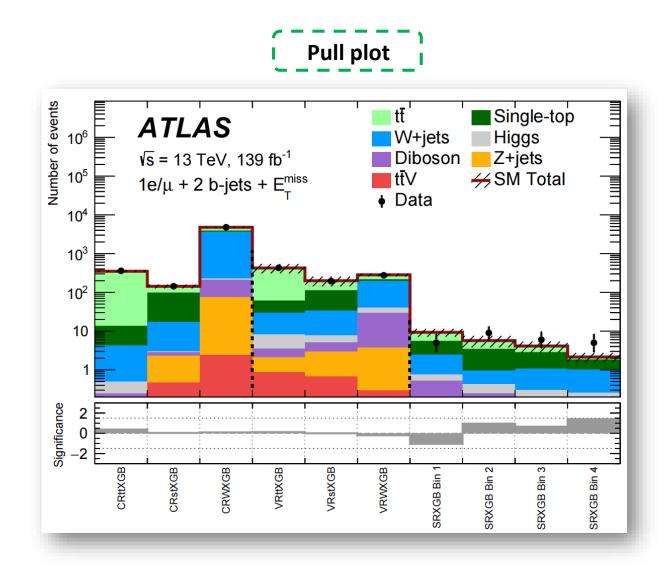
Systematic Uncertainties

C1C1-Wh model	SRXGB Bin 1	SRXGB Bin 2	SRXGB Bin 3	SRXGB Bin 4	
	[0.91, 0.928)	[0.928, 0.948)	[0.948, 0.964)	[0.964, 1]	
Total background expectation	9.4	5.7	4.2	2.2	
Total background systematic uncertainty	±2.1 ±2.0 ±1.4		±1.4	±0.7	
Th	eoretical systemati	c uncertainties			
$t\bar{t}$	±1.1	±0.7	±0.5	±0.10	
Single top	±1.2	±0.9	±0.9	± 0.4	
W+jets	± 0.17	± 0.14	±0.12	± 0.04	
Other backgrounds	±0.14	±0.13	±0.13	±0.10	
	MC statistical un	certainties			
MC statistical uncertainty	±1.0	±0.8	±0.7	±0.4	
Uncerta	inties in the backgr	ound normalisation	n		
Normalisation of dominant backgrounds	±1.3	±0.9	±0.5	±0.19	
Exp	erimental systema	tic uncertainties			
Jet energy resolution	±1.1	±1.2	±0.6	±0.4	
Jet energy scale	±0.5	±0.31	±0.33	±0.07	
b-tagging	± 0.12	±0.8	±0.05	±0.06	
Pile-up/JVT	±0.4	±0.5	±0.29	± 0.09	
Lepton and $E_{\rm T}^{\rm miss}$ uncertainties	± 0.05	±0.4	± 0.14	± 0.12	

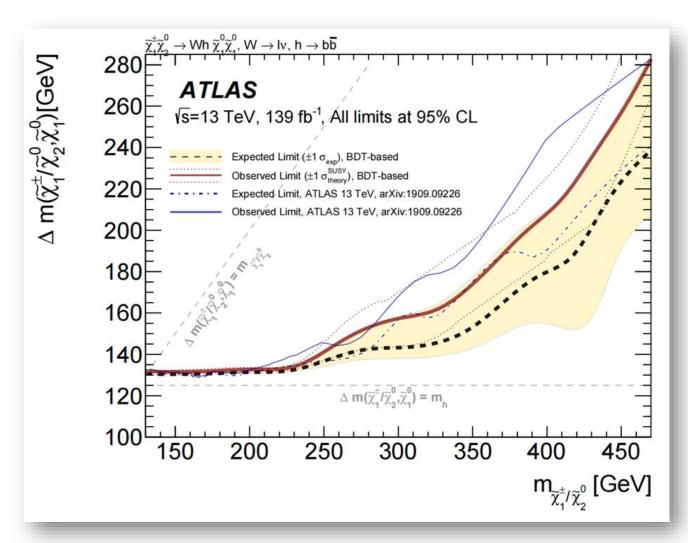
- ✓ The uncertainties in the Normalization of dominate background contribute 9 16% for each SR.
- \checkmark The dominant experimental uncertainty arises from the JER (12% 20%) followed by the JES and b-tagging
- ✓ The MC statistical uncertainties contribute up to 19% depending on the SR.

Fit strategy

- Fit using HistFitter:
 - **Background only fit**: Only the CRs are used to constrain the fit parameters. Any potential signal contribution is neglected everywhere. -> To calculate background estimation in SRs and VRs.
 - **Model-dependent fit**: Both CRs and SRs are used in the fit. The signal contribution is taken into account as predicted by the tested model in all the regions. -> To calculate the exclusion limits.
 - Model-independent fit: Both CRs and SRs are used in the fit. The signal is independently
 considered in each SR without specific model. -> To derive model-independent upper limits.


Results: Background only fit

$$mu_{-}t\bar{t} = 1.00 \pm 0.29$$


mu_single-top = 0.95 ± 0.19

mu_W+jets = 1.30 ± 0.05

No significant excesses are observed in data above the SM prediction.

Results: Model-dependent fit

✓ Exceed previous constraints at low Δm ($\chi_1^{\pm}/\chi_2^0,\chi_1^0$) by up to 40 GeV in the range of 200 – 260 GeV and 280 – 470 GeV in m (χ_1^{\pm},χ_2^0).

Results: Model-independent fit

Table 12: The number of observed events, total SM background, 95% CL upper limits on the visible cross-section $(\langle \epsilon \sigma \rangle_{obs}^{95})$ and on the number of signal events (S_{obs}^{95}) . The fifth column (S_{exp}^{95}) shows the 95% CL upper limit on the number of signal events, given the expected number (with ±1 standard deviation excursions on the expectation) of background events. The last three columns indicate the CL_B value that provides a measure of compatibility of the observed data with the 95% CL signal strength hypothesis relative to fluctuations of the background, the discovery p-value (p_0) that measures compatibility of the observed data with the background-only (zero signal strength) hypothesis relative to fluctuations of the background and the corresponding Gaussian significance (Z). Larger values indicate greater relative compatibility. The p_0 is not calculated in signal regions with a deficit relative to the nominal background prediction and here the p_0 value is capped at 0.50.

Signal channel	Observed events	Total SM background	$\langle \epsilon \sigma \rangle_{\rm obs}^{95} [{\rm fb}]$	$S_{ m obs}^{95}$	$S_{ m exp}^{95}$	CL_B	p_0	Z
SR (inclusive)	25	21.4 ± 4.2	0.12	16.2	$13.4^{+5.5}_{-4.0}$	0.70	0.29	0.57
SR Bin 2–4	20	12.0 ± 3.0	0.13	17.9	$13.4^{+5.5}_{-4.0}$ $10.7^{+4.7}_{-3.1}$	0.92	0.06	1.58
SR Bin 3–4	11	6.3 ± 1.6	0.09	12.0	$7.4^{+3.5}_{-2.3}$	0.89	0.08	1.42
SR Bin 4	5	2.2 ± 1.0	0.06	8.0	$5.1_{-1.6}^{+2.7}$	0.86	0.08	1.37

Summary

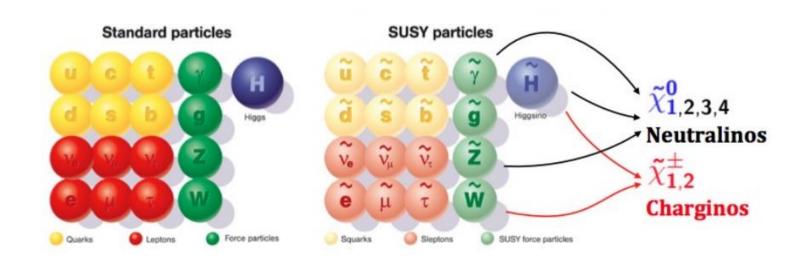
- Presented a search for direct EWK production of chargino**neutralino**, decaying to **1L** via **W/h** and **LSP**.
- The search is performed in events with one isolated lepton, b-jets and E_T^{miss} based on full Run-2 data.
- The BDT-based approach is used to improve the sensitivity in the complex compressed phase-space.
- No significant deviation from the expected Standard Model background is observed.
- The current search improve previous constraints at low $\Delta m (\chi_1^{\pm}/$ χ_2^0, χ_1^0) by up to 40 GeV in the range of 200 – 260 GeV and 280 – 470 GeV in m $(\chi_1^{\pm}, \chi_2^{0})$.
- Model-independent fit results are also provided.
- More details in arvix (https://arxiv.org/abs/2310.08171).

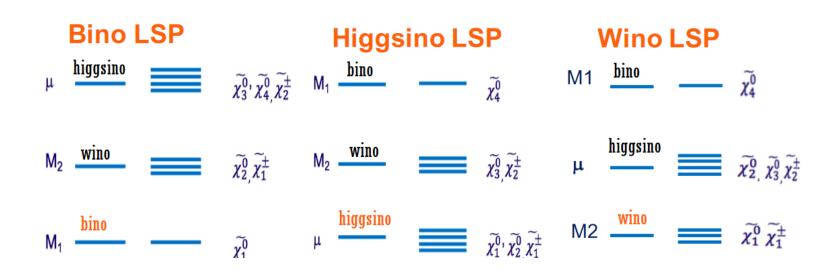
EUROPEAN ORGANISATION FOR NUCLEAR RESEARCH (CERN)

arXiv:2310.08171v1

13th October 2023

Search for direct production of electroweakinos in final states with one lepton, jets and missing transverse momentum in pp collisions at \sqrt{s} = 13 TeV with the ATLAS detector


The ATLAS Collaboration


Searches for electroweak production of chargino pairs, $\tilde{\chi}_1^+\tilde{\chi}_1^-$, and of chargino and next-tolightest neutralino, $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$, are presented. The models explored assume that the charginos decay into a W boson and the lightest neutralino, $\tilde{\chi}_1^{\pm} \to W^{\pm} \tilde{\chi}_1^0$. The next-to-lightest neutralinos are degenerate in mass with the chargino and decay to $\tilde{\chi}_1^0$ and either a Z or a Higgs boson, $\tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0$ or $h \tilde{\chi}_1^0$. The searches exploit the presence of a single isolated lepton and missing transverse momentum from the W boson decay products and the lightest neutralinos, and the presence of jets from hadronically decaying Z or W bosons or from the Higgs boson decaying into a pair of b-quarks. The searches use 139 fb⁻¹ of \sqrt{s} = 13 TeV proton–proton collisions data collected by the ATLAS detector at the Large Hadron Collider between 2015 and 2018. No deviations from the Standard Model expectations are found, and 95% confidence level exclusion limits are set. Chargino masses ranging from 260 to 520 GeV are excluded for a massless $\tilde{\chi}_1^0$ in chargino pair production models. Degenerate chargino and next-to-lightest neutralino masses ranging from 260 to 420 GeV are excluded for a massless $\tilde{\chi}_1^0$ for $\tilde{\chi}_2^0 \to Z \tilde{\chi}_1^0$ For decays through an on-shell Higgs boson and for mass-splitting between $\tilde{\chi}_1^{\pm}/\tilde{\chi}_2^0$ and $\tilde{\chi}_1^0$ as small as the Higgs boson mass, mass limits are improved by up to 40 GeV in the range of 200-260 GeV and 280-470 GeV compared to previous ATLAS constraints.

© 2023 CERN for the benefit of the ATLAS Collaboration. Reproduction of this article or parts of it is allowed as specified in the CC-BY-4.0 license.

Backup

SUSY EWK model

Data and simulated samples

- Data: full Run-2 data, corresponding to 139 fb^{-1} data collected between 2015 and 2018.
- Background samples:

Process	Generator	Parton shower and	Tune	PDF	Cross-section
		hadronisation			
$t\bar{t}$	Powнеg Box v2 [67–70]	Рутніа 8.230 [47]	A14 [61]	NNPDF2.3LO [48]	NNLO+NNLL [71]
Single top	Powнед Box v2 [72–74]	Рутніа 8.230	A14	NNPDF2.3LO	NLO+NNLL [75]
W/Z+jets	Sherpa 2.2.1 & 2.2.11 [76]	Sherpa 2.2.1 & 2.2.11	SHERPA standard	NNPDF3.0NNLO	NNLO [77]
Diboson	Sherpa 2.2.1 [76] & 2.2.2	Sherpa 2.2.1 & 2.2.2	Sherpa standard	NNPDF3.0NNLO	NLO [77]
Multiboson	Sherpa 2.2.1 & 2.2.2	Sherpa 2.2.1 & 2.2.2	SHERPA standard	NNPDF3.0NNLO	NLO [77]
$t\bar{t} + V$	MadGraph5_aMC@NLO v2.3.3	Рутніа 8.210	A14	NNPDF2.3LO	NLO [78]
$t\bar{t} + h$	Powheg Box v2	Рутніа 8.230	AZNLO [79]	CTEQ6L1 [80]	NLO [81]
Vh	Powneg Box v2	Рутніа 8.212	A14	NNPDF2.3LO	NLO [81]

Signal samples:

- LSP is bino-like; $\tilde{\chi}_1^{\pm}$ and $\tilde{\chi}_2^0$ are wino-like and mass-degenerate
- Generated using aMC@NLO +Pythia 8. Cross sections calculated at NLO+NLL.
- The production cross-section of both processes decreases as the mass of the $\tilde{\chi}_1^{\pm}$ increases.
- The cross-section is 0.62 fb (1.34fb) for C1N2(1000,0) and C1C1(1000,0).

Object reconstruction

Cut Value/description				
Preselected jet				
Algorithm anti- k_t -4, EMPFlow				
Acceptance	$p_{\rm T} > 20 {\rm GeV}, \eta < 4.5$			
Signal jet				
Acceptance	$p_{\rm T} > 30 {\rm GeV}, \eta < 2.8$			
JetVertexTagger	JVT @ tight working point			
	for $p_{\rm T} < 60{\rm GeV}$ and $ \eta < 2.4$			
Signal b-jet				
<i>b</i> -tagger Algorithm	DL1r @ 77 % PC working point			
Acceptance	$p_{\rm T} > 30 {\rm GeV}, \eta < 2.8$			

Cut	Value/description			
Preselected Electron				
Algorithm AuthorElectron				
Acceptance	$p_{\rm T} > 7 {\rm GeV}, \eta^{\rm clust} < 2.47$			
Quality	LooseAndBLayerLLH			
IP	$ \Delta z_0 \sin(\theta) < 0.5 \text{ mm}$			
	Signal Electron			
Acceptance	$p_{\rm T} > 7 { m GeV}, \eta^{ m clust} < 2.47$			
Quality	TightLLH			
Isolation	PLVLoose for $p_{\rm T}$ < 75 GeV			
	PLVTight for $p_T > 75 \text{GeV}$			
IP	$d_0/\sigma(d_0) < 5$			

Cut	Value/description				
	Preselected muon				
Acceptance	$p_{\rm T} > 6 {\rm GeV}, \eta < 2.7$				
Quality	Medium				
IP	$ \Delta z_0 \sin(\theta) < 0.5 \text{ mm}$				
	Signal muon				
Acceptance	$p_{\rm T} > 6 {\rm GeV}, \eta < 2.5$				
Isolation	PLVLoose for p_T < 75 GeV				
	PflowTight_VarRad for $p_T > 75 \text{ GeV}$				
IP	$d_0/\sigma(d_0) < 3$				

Large-R Jet

- Anti- k_{t} algorithm (R = 1.0)
- Trimmed with $f_{cut} = 0.05$ and $R_{sub} = 0.2$
- $p_T > 200 \text{ GeV}$; $|\eta| < 2.0$
- **W/Z-tagging**: 3-var, 50% WP

Met

- baseline objects + TST.
- Tight WP.

- ✓ AnalysisOverlap removal procedure applied to baseline objects and relied on SUSY background forum recommendation.
- ✓ Dedicated isolation study performed for electron/muon identification.

trigger

• Events are recorded with the ORing of a list of single lepton (electron and muon) triggers.

Trigger	Trigger name	Year	HLT cut [GeV]	Offline cut [GeV]
	HLT_e24_lhmedium_L1EM20VH	2015	24	25
	HLT_e60_lhmedium	2015	60	61
	HLT_e120_lhloose	2015	120	121
single electron trigger	HLT_e26_lhtight_nod0_ivarloose	2016-2018	26	27
	HLT_e60_lhmedium_nod0	2016-2018	60	61
	HLT_e140_lhloose_nod0	2016-2018	140	141
	HLT_mu20_iloose_L1MU15	2015	20	21
single muon trigger	HLT_mu26_ivarmedium	2016-2018	26	27.3
	HLT_mu50	2015-2018	50	52.5

Some key variables

$$m_{\mathrm{T}} = \sqrt{2p_{\mathrm{T}}^{\ell}E_{\mathrm{T}}^{\mathrm{miss}}(1-\cos[\Delta\phi(\boldsymbol{p}_{\mathrm{T}}^{\ell},\boldsymbol{p}_{\mathrm{T}}^{\mathrm{miss}})])},$$

$$\sigma_{E_{\mathrm{T}}^{\mathrm{miss}}} = \sqrt{2 \ln \left[\frac{\max_{\boldsymbol{p}_{\mathrm{T}}^{\mathrm{inv}} \neq 0} \mathcal{L} \left(E_{\mathrm{T}}^{\mathrm{miss}} | \boldsymbol{p}_{\mathrm{T}}^{\mathrm{inv}} \right)}{\max_{\boldsymbol{p}_{\mathrm{T}}^{\mathrm{inv}} = 0} \mathcal{L} \left(E_{\mathrm{T}}^{\mathrm{miss}} | \boldsymbol{p}_{\mathrm{T}}^{\mathrm{inv}} \right)} \right]}.$$

$$am_{\text{T2}} = \min(m_{\text{T2}}(\ell + j_1, j_2), m_{\text{T2}}(\ell + j_2, j_1))$$

 $m_{\rm T2}$ is defined as min[max($m_{\rm T}^2(p_{\alpha},p),m_{\rm T}^2(p_{\beta},q))$]

Systematic Uncertainties

- Theoretical uncertainty:
 - Signal:
 - factorization, renormalization, CKKW
 - Ttbar & single-top:
 - Parton Shower, Hard Scattering, ISR, FSR, interference between single-top Wt and ttbar production.
 - Wjets & Zjets:
 - Renorm, Factor, RenormFactor, PDF, CKKW, QSF, EWK correction.
 - Diboson & ttV & tth & Vh:
 - Renorm, Factor, RenormFactor, PDF

- Experimental uncertainty:
 - jet energy scale (JES)
 - jet energy resolution (JER)
 - E_T^{miss} modeling
 - lepton reconstruction and identification
 - pile-up/JVT

- ✓ For major bkgs with dedicated CRs: uncertainty calculated based on transfer factor from CR to SR.
- ✓ For small bkgs: Estimated using yields uncertainty. cross-section uncertainties are considered.