

# Search for dark photons in rare Z boson decays with the ATLAS detector

**CLHCP 2023** 

Nov. 18th, 2023

Mingyi Liu<sup>1,2</sup>

nh196245@mail.ustc.edu.cn



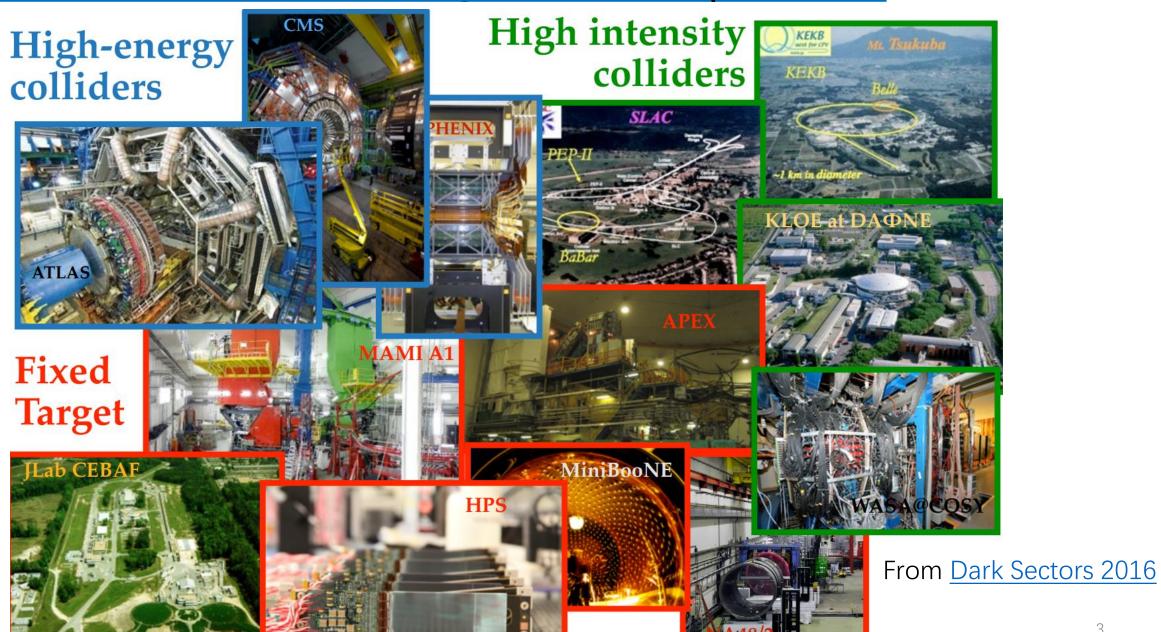
- 1. University of Science and Technology of China
- 2. Brookhaven National Laboratory



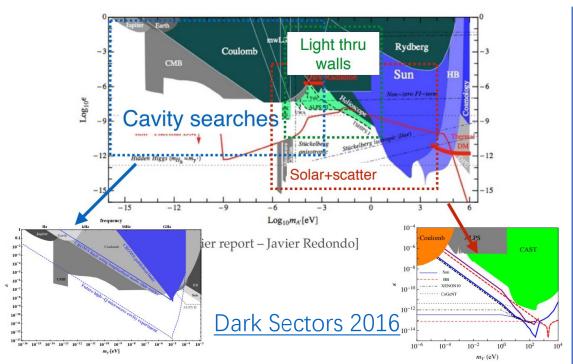
# Dark photon: introduction

#### **Motivation**

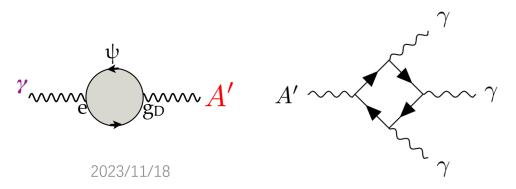
- $\triangleright$  Important candidate for dark sector: dark photon (A')
- > Hidden sector couplings and mass generation mechanisms

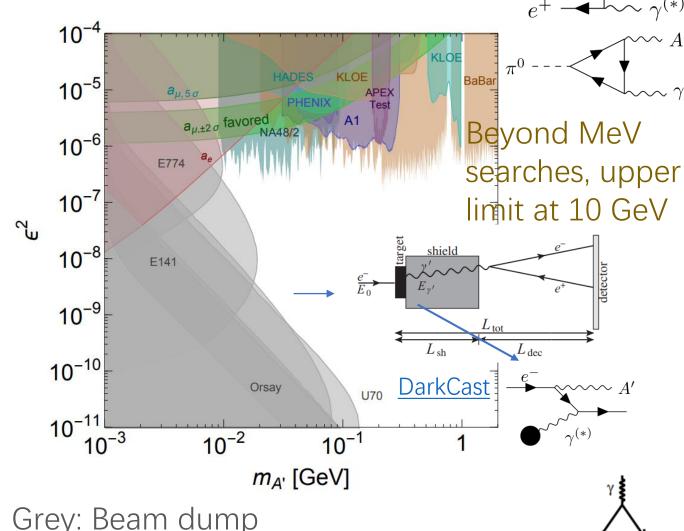

Gauge boson from  $U(1)_D$  couples to neutral gauge boson by kinetic mixing  $\varepsilon$  Whose mass generated from Dark Higgs  $h_D$ 

SM Electroweak couplings


$$heta_Z = -rac{arepsilon tan heta_W m_Z^2}{m_Z^2 - m_{A'}^2}$$

Enable interactions between A' and SM

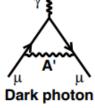

# Experiments searching for dark photon



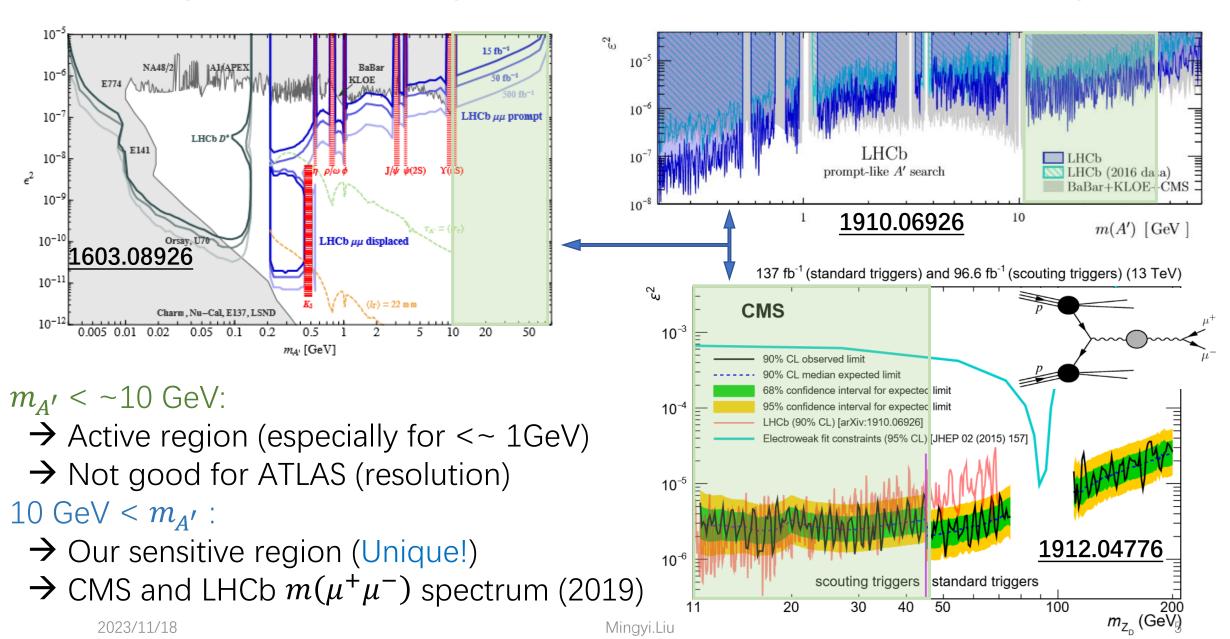

# Experiments searching for dark photon



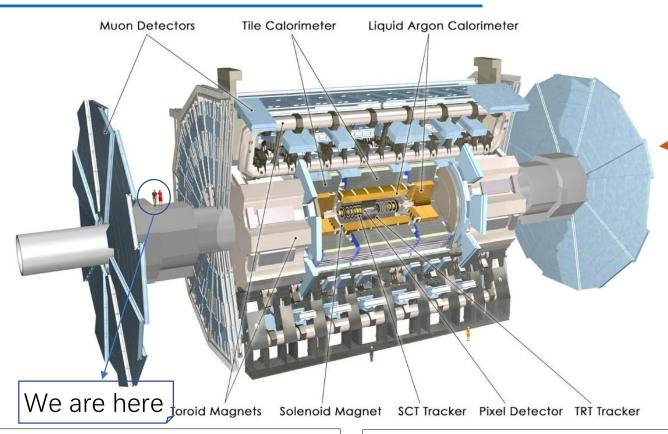
Sub-MeV searches:  $m_{A'} < \sim 1 \text{MeV}$ (Cannot even decay into electron pair)







Grey: Beam dump

Green/Red: g-2 precision measurement


Others: Pair resonance searches



# LHC experiments (Set limits on $\varepsilon$ vs A' mass)



### The ATLAS detector





- > CERN, Geneva, Switzerland
- > ATLAS size: 46m×25m, the largest LHC
- Electroweak energy scale
- Full Run2 data (2015~2018), 139 fb<sup>-1</sup>

#### Inner detector:

- $|\eta| < 2.5$
- Momentum, electrical charge
- Pixel detector, tracker (semiconductor), TRT

#### **Calorimeters:**

• EM Cal.( $|\eta|$  < 2.5): e&y, lead absorber submerged by LAr

• Hadron Cal.( $|\eta|$  < 4.9):

LAr with copper/tungsten absorber (forward)
Scintillator tile with steel absorber (central)

#### Muon spectrometer:

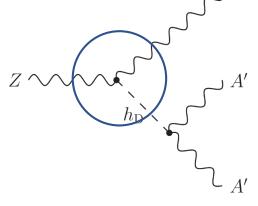
- Tigger( $|\eta|$  < 2.4): TGC, RPC
- Tracking( $|\eta|$  < 2.7): MDT, CSC

#### Magnet system:

- Solenoid Magnet: 2T
- Toroid Magnets: 4T

2023/11/18 <u>Mingyi.Liu</u>

### Motivation

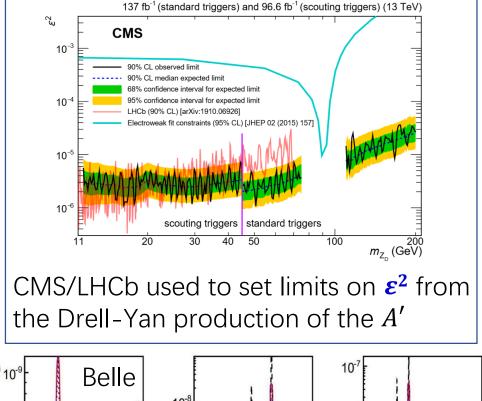

Search for dark photon A' from BSM rare Z decay:  $Z \rightarrow A' h_D$  ( $h_D$  is the dark Higgs)

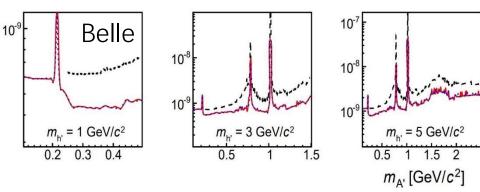
- Important candidate for the dark sector (DS)
- > Hidden sector couplings

#### Modeling for A'

✓ Gauge boson from  $U(1)_D$ :  $D_{\mu} = \partial_{\mu} + ie_D A'_{\mu}$   $in \ which: e_D = \sqrt{4\pi\alpha_D}$ 

✓ Couples to the SM Z boson by kinetic mixing  $\varepsilon$ :  $\sim \varepsilon Z^{D}_{\mu\nu} F^{\mu\nu}$ 





Decay rate  $\propto \alpha_D \varepsilon^2$ 

#### Assumptions:

(Minimal kinetically mixed)

- Br  $(h_D \to A' A') = 100\%$
- A' is the lightest DS
- Br  $(A' \rightarrow SM f \bar{f}) = 100\%$
- The sensitive region on the ATLAS for  $Z \rightarrow A' h_D$  is  $5 \text{ GeV} < m_{A'} < 40 \text{ GeV}$ .
- A new mass region for exploring  $\alpha_D \varepsilon^2$





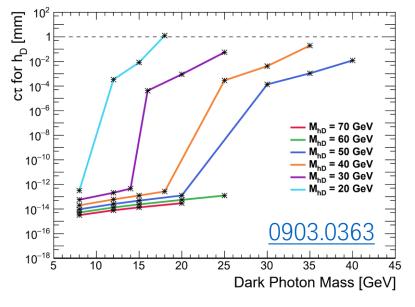
B-factories used to set limits on  $\alpha_D \varepsilon^2$  with the same dark-Higgs associated process, in the range  $m_{A'} < 5 \; GeV$ 

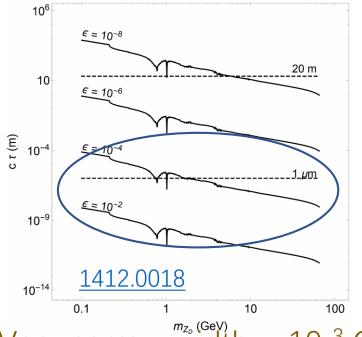
# Signal modeling

Focusing on the scenario with

| $m_{A'} + m_{h_D}$ | $< m_Z$ | and | $m_{A'}$ | $< m_{h_D}$ |
|--------------------|---------|-----|----------|-------------|
|--------------------|---------|-----|----------|-------------|

|                             | T T T T T T T T T T T T T T T T T T T                              |                                                                          |
|-----------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------|
| Scenario                    | $m_{h_D} > 2m_{A'}$                                                | $m_{\boldsymbol{h_D}} \in (m_{A'}, 2m_{A'})$                             |
| Dark Higgs decay            | $h_D \rightarrow A'A'$                                             | $h_D \rightarrow A'A'^* \rightarrow A'f\bar{f} / h_D^* \rightarrow A'A'$ |
| Final state requirement     | $Z \rightarrow A' h_D \rightarrow A'A'A'^{(*)} \rightarrow 4l + X$ |                                                                          |
| Monte Carlo (MC) simulation | Madgraph5 (ME) + MadSpin (Decay) + Pythia8 (A14)                   |                                                                          |


Benchmark parameter:


$$\alpha_D = 0.1; \, \varepsilon = 10^{-3}$$

Testing mass points

2023/11/18

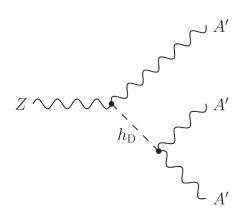
| $m_{A^{\prime}}$ range    | 5 ~ 40 GeV  |
|---------------------------|-------------|
| $m_{h_D}$ range           | 20 ~ 70 GeV |
| $\Delta(m_{A'}, m_{h_D})$ | (1, 10) GeV |



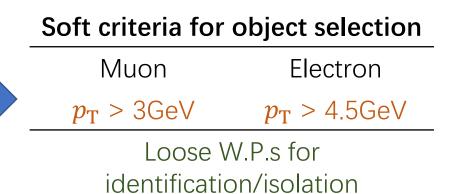


A' and  $h_D$  decay promptly; A': Very narrow width  $\sim 10^{-3}$  GeV

# SM Background (BKG) modeling


- Prompt BKGs
   (share the same 4l q
  final state as the signal process)
- ✓ Simulated by MC method




| $q \qquad l^{+}$ $Z^{(*)}/\gamma^{*} \qquad l^{-}$ $q \qquad Z^{(*)}/\gamma^{*} \qquad l^{-}$ $q \qquad Q \rightarrow ZZ \rightarrow 4l \qquad gg$ | $Z^{(*)}/\gamma^* \qquad \qquad l^-$ | $g \xrightarrow{Z^{(*)}} l^{+}$ $g \xrightarrow{H^{(*)}} Z^{(*)} l^{-}$ $g \xrightarrow{l^{+}} l^{-}$ $g \xrightarrow{l^{+}} d^{+}$ |
|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Inclusive                                                                                                                                          | Inclusive $q q \rightarrow 4l$       | Sherpa                                                                                                                              |
| $Z/ZZ \rightarrow 4l$                                                                                                                              | $ggZZ$ (Non-resonance $ZZ^{(*)}$ )   | Sherpa                                                                                                                              |
| $Higgs \rightarrow ZZ \rightarrow 4l$                                                                                                              | ggF, $VBF$                           | Powheg + Pythia                                                                                                                     |
| tri-Boson (VVV)                                                                                                                                    | WWZ, WZZ, ZZZ                        | Sherpa                                                                                                                              |
| ttll                                                                                                                                               | ttZ                                  | Sherpa                                                                                                                              |

- Non-prompt BKGs (with different final states)
- $\checkmark$  Recognized as 4l events by mistake, due to the detector's mis-identification effect
- ✓ Poor MC modeling, a data-driven fake factor method used
- ✓ Also called as Fake BKGs

# Signal Region (SR)

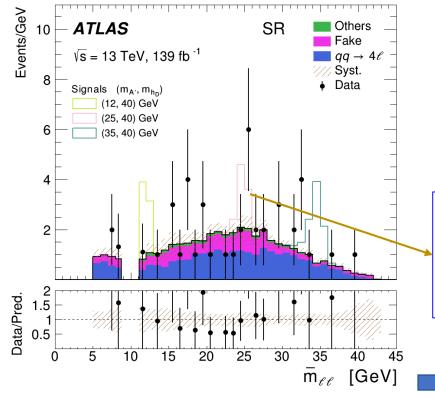


 $Z \rightarrow 6$  final objects High multiplicities of soft particles from decay of hidden-sector particles! Low efficiency for low  $p_{\rm T}$ leptons



| Selections                                               | Description                                                                                                                        |
|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| $N_{lepton} >= 4$                                        | No less than 4 leptons                                                                                                             |
| From Z                                                   | For all OSSF quadruplets, $m_{4l} + 5 { m GeV} < m_Z$                                                                              |
| N <sub>quad</sub> >= 1                                   | At least one OSSF quadruplet ( $\Delta R > 0.1(0.2)$ between SF (OF) leptons) $\min  m_{l1l2} - m_{l3l4}  \ (m_{l1l2} > m_{l3l4})$ |
| On Shell                                                 | $m_{l3l4}/m_{l1l2} > 0.85$                                                                                                         |
| $J/\psi$ Veto                                            | For all OSSF pairs, $m_{ll} > 5 { m GeV}$                                                                                          |
| $\Upsilon(\boldsymbol{b}\overline{\boldsymbol{b}})$ Veto | Mass window veto (OSSF pairs): $[m_{\Upsilon(1s)}$ – 0.7, $m_{\Upsilon(3s)}$ + 0.75]GeV                                            |

# Results


#### 139 fb<sup>-1</sup>

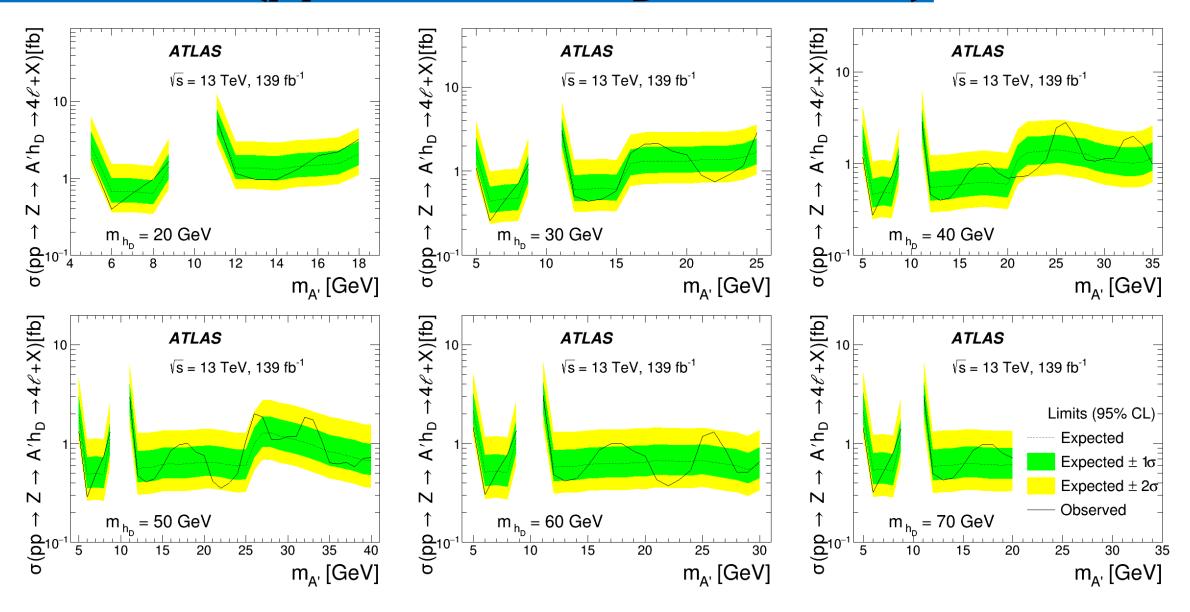
| BKG    | Yields (Post-fit) |
|--------|-------------------|
| qq4l   | 25.9 ± 2.4        |
| Fake   | 13.2 ± 5.6        |
| ggZZ   | $1.9 \pm 0.7$     |
| Others | <<1               |
| Total  | 41.4 ± 5.3        |
| Data   | 44                |

# Dominant backgrounds: qqZZ, Fake

Good agreement between SM prediction and data

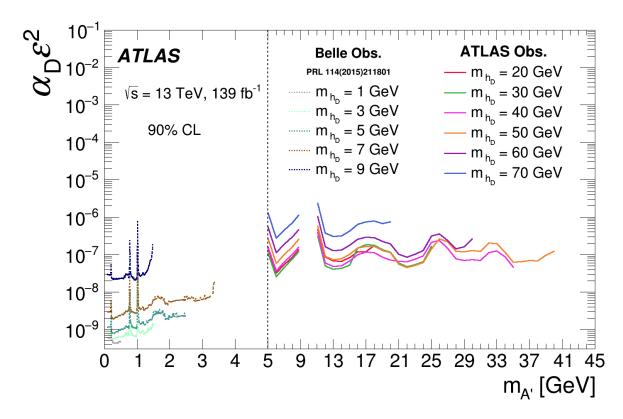
# BKG modeling has been constrained and validated in CR/VR

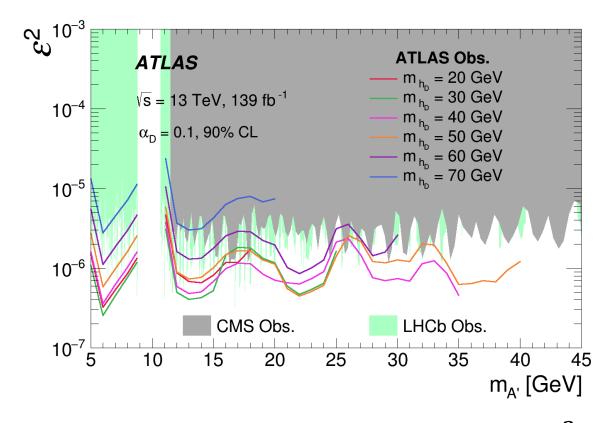



- SGN width for  $\overline{m}_{ll}$  under different testing points
- Width ranges: 0.2~1.4 GeV
- 1 GeV as the bin width for fitting template
- The best local sensitivity (around 25 GeV):  $1.6\sigma$
- No evidence for the SGN

- ✓ Good physics meaning
- ✓ Best sensitivity for most of the signal points
- ✓ Chosen as the fitting discriminant

Systematics (prompt): theoretical/experimental uncertainties;


uncertainties from the data-driven approach


# Limits on $\sigma(pp \to Z \to A' h_D \to 4l + X)$



# Limits on $\alpha_D \varepsilon^2$

#### Decay rate (cross-section) $\propto \alpha_D \varepsilon^2$





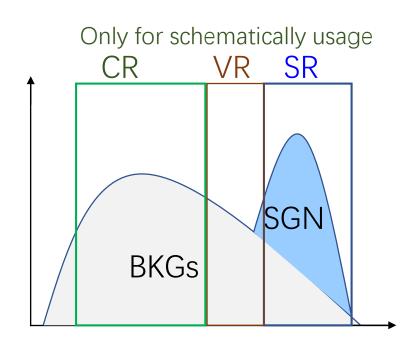
#### Setting limits on $\alpha_D \varepsilon^2$ :

- ✓ Previous range (Belle):  $m_{A'}$  < 5GeV
- ✓ Extended significantly to 40 GeV

Compare with CMS/LHCb (limits on  $\varepsilon^2$ ):

- ✓ Some assumptions on  $\alpha_D$  (set it as 0.1)
- ✓ Comparable (even better)

# Summary


- The first search for the dark-Higgs-strahlung process on the LHC.
- No evidence for A' signal, setting limits on the signal cross section.
- Setting limits on  $\alpha_D \varepsilon^2$  in a significantly extended A' mass region.
- Reference: Search for dark photons in rare Z boson decays with the ATLAS detector, arXiv:2306.07413, accepted by Physical Review Letters.

Thanks!

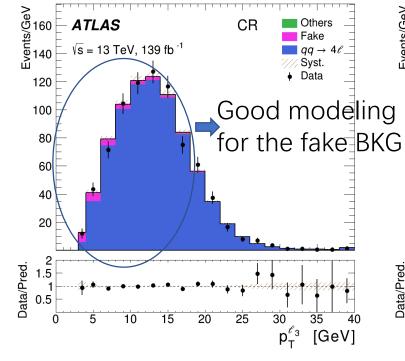
# Backup

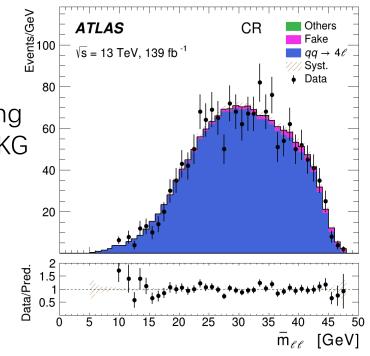
# Analysis strategy

- Signal Region (SR): optimize a region rich of signals, with the best S/B sensitivity
- Control Region (CR): a region rich of BKGs, poor of signals, for constraining the major background
- Fitting: simultaneous fit in the SR and CR for background constrain, before estimating significance/setting limits.
- Validation Region(s) (VR): rich of BKGs, but more similar to the SR, to validate the background modeling
- Systematics: theoretical/experimental uncertainties; uncertainties from the data-driven approach in the data-driven approach.



# Control Region (ZCR)


| Selections             | Description                                                                                                                            |
|------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| $N_{lepton} >= 4$      | No less than 4 leptons                                                                                                                 |
| CR Z Peak              | For all OSSF Quadruplets, $m_Z - 5 { m GeV} < m_{4l} < m_Z + 5 { m GeV}$                                                               |
| N <sub>quad</sub> >= 1 | At least one OSSF quadruplet ( $\Delta R > 0.1(0.2)$ between SF (OF) leptons) Pairing: min $ m_{l1l2}-m_{l3l4} $ $(m_{l1l2}>m_{l3l4})$ |
| $J/\psi$ Veto          | For all OSSF pairs, $m_{ll}>5~{ m GeV}$                                                                                                |


Fitting discriminant:

$$\overline{m}_{ll} = \frac{1}{2}(m_{l1l2} + m_{l3l4})$$

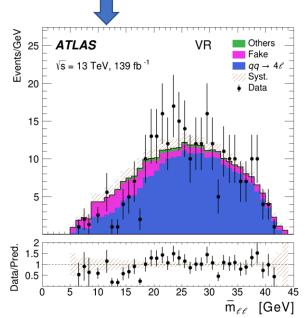
#### 139 fb<sup>-1</sup>

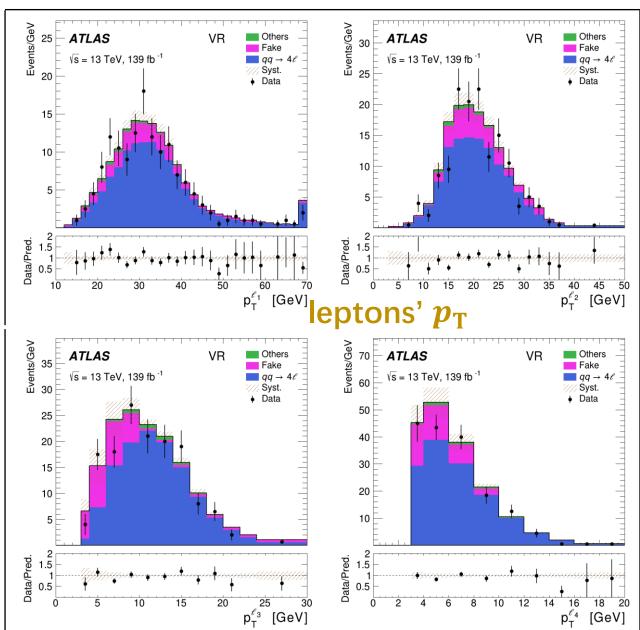
| BKG    | CR Yields (Post-fit) |
|--------|----------------------|
| qq4l   | 1554.8 ± 47.6        |
| Fake   | 43.1 ± 25.0          |
| ggZZ   | 4.2 ± 1.7            |
| Others | ~1                   |
| Total  | 1603.7 ± 40.0        |
| Data   | 1602                 |





# Validation Region (VR)


SR:  $m_{l3l4}/m_{l1l2}$  > 0.85


 $\rightarrow$ 

VR:  $m_{l3l4}/m_{l1l2}$ <0.85

Fitting discriminant:

$$\overline{m}_{ll} = \frac{1}{2} (m_{l1l2} + m_{l3l4})$$





139 fb<sup>-1</sup>

| BKG    | Yields (Post-fit) |
|--------|-------------------|
| qq4l   | 238.8 ± 15.2      |
| Fake   | 47.3 ± 26.1       |
| ggZZ   | 5.4 ± 1.9         |
| Others | ~1                |
| Total  | 292.8 ± 27.7      |
| Data   | 286               |

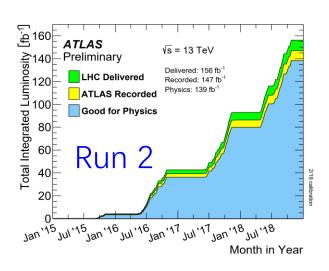
Fake plays an important role in the soft region.

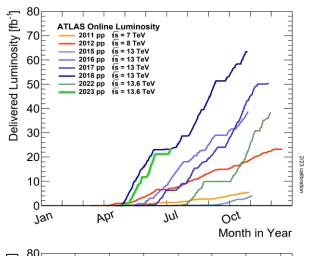
Good BKG modeling in the VR!

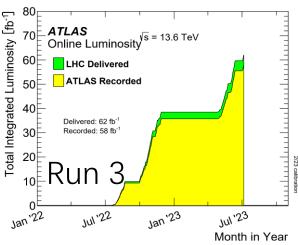
# Data collected by the ATLAS

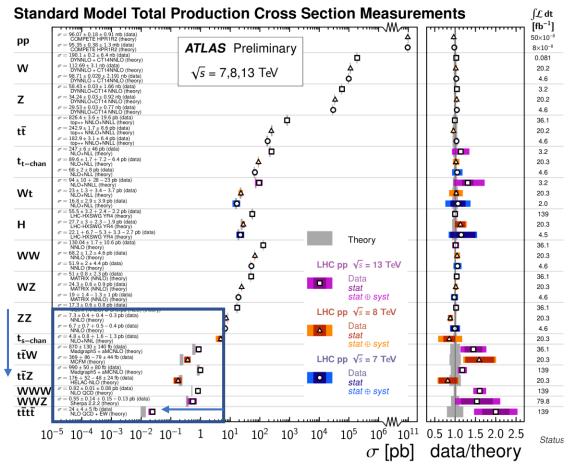
Integrated luminosity for describing the accumulated data:  $\mathcal{L} = \int L \ dt$ 

Run 1 (2011~2012)


• 7~8 TeV, ~30 fb<sup>-1</sup>


Run 2 (2015~2018)


13 TeV, 139 fb<sup>-1</sup>


Run 3 (2022~Now)

• 13.6 TeV, ~60 fb<sup>-1</sup>









- ✓ SM processes with 4l final state have small cross-sections!
- Mingyi.Liu  $\checkmark$  4l: very clean channel for rare process bounting

# Object definition

|                     | Muon                                                          | Electron                                       |
|---------------------|---------------------------------------------------------------|------------------------------------------------|
|                     | $p_{ m T} > 3{ m GeV}$ $p_{ m T} > 15{ m GeV}$ if Calo-tagged | $p_{\rm T} > 4.5 {\rm GeV}$<br>$ \eta  < 2.47$ |
| Baseline<br>leptons | $ \eta  < 2.7$                                                | Pass object quality ( <u>isGoodOQ</u> )        |
| leptons             | $z_0 sin 	heta < 0.5$ mm if $\mu$ isn't SA                    | $z_0 sin 	heta < 0.5 \; 	ext{mm}$              |
|                     | ID: Loose working point                                       | ID: Loose working point                        |
|                     | Overlap removal between μ/e                                   | Overlap removal between $\mu/e \& e/e$         |

|                 | Fulfill Baseline                           | requirements               |
|-----------------|--------------------------------------------|----------------------------|
| Signal leptons  | $ d_0/\sigma_{d_0} $ < 3 if $\mu$ isn't SA | $ d_0/\sigma_{d_0}  < 5$   |
| (Tight leptons) | ID: the same as baseline                   | ID: LooseAndBLayerLLH W.P. |
|                 | Isolation: PflowLoose_VarRad W.P.          | Isolation: FCLoose W.P.    |

| Loose leptons | Baseline leptons fail the signal-lepton requirements |
|---------------|------------------------------------------------------|
| Loose leptons | baseline leptons fail the signal-lepton requirements |

# Data and triggers

- Data: Full Run 2 data, 13 TeV, 139 fb<sup>-1</sup>
- Trigger list (single lepton, di-lepton, tri-lepton soft triggers)

```
2015
          HLT_mu20_iloose_L1MU15 HLT_mu50
          HLT_mu18_mu8noL1
          HLT_2e12_lhloose_L12EM10VH
          HLT_mu26_ivarmedium
2016~2018
          HLT_2mu14
          HLT_mu22_mu8noL1
          HLT_e26_lhtight_nod0_ivarloose HLT_e60_lhmedium_nod0 HLT_e140_lhloose_nod0
          HLT_2e17_lhvloose_nod0_L12EM15VHI
          HLT_e17_lhloose_nod0_mu14
          HLT_e12_lhloose_nod0_2mu10
          HLT 2e12 Ihloose nod0 mu10
```

Trigger efficiency only ~70%

→ Global trigger scale factor implemented (Pseudo-experimental method)

### Fake BKG: Fake enriched region and fake factor

- $\triangleright$  Fake leptons from Z + jets / tt / WZ, poor modeling: Data-driven fake factor method
- Fake enriched region defined to calculate fake factor (F.F.)

$$N_{Baseline\ lepton} \ge 3$$
 $N_{OSSF\ signal\ lepton\ pair} \ge 1$ 
 $|m_{Signal\ lepton\ pair} - m_{Z}| < 15\ GeV$ 

- F.F. is calculated by the baseline leptons aside from the Z-decayed pair
- Parametrized by  $(p_T, \eta, lepton flavor)$
- MC contaminant judged by MC information

$$F.F. = \frac{N_{Data}^{Tight} - N_{Prompt MC}^{Tight}}{N_{Data}^{Loose} - N_{Prompt MC}^{Loose}}$$

Apply fake factors to 4*l* events with loose leptons that can enter the SR (FFAR):

$$N_{fake}$$

$$= \sum_{i}^{N_{oneLoose}} w_{i}F_{i} - \sum_{i}^{N_{twoLoose}} w_{i}F_{i}F'_{i} + \sum_{i}^{N_{threeLoose}} w_{i}F_{i}F'_{i}F''_{i} - \sum_{i}^{N_{fourLoose}} w_{i}F_{i}F'_{i}F''_{i}F'''_{i}$$

$$- (\sum_{i}^{N_{oneLoose}} w_{i}F_{i} - \sum_{i}^{N_{twoLoose}} w_{i}F_{i}F'_{i}F''_{i} - \sum_{i}^{N_{fourLoose}} w_{i}F_{i}F'_{i}F''_{i}F'''_{i})$$

# Systematics for fake BKG

- Fake source uncertainty (Impact on the F.F. from the b-jet sources, dominant)
- ➤ Uncertainty of fake factor
  - ✓ MC subtraction uncertainty (uncertainties of the subtracted prompt BKGs)
  - ✓ Statistical uncertainty in the Fake enriched region when calculating the F.F.s
- From the F.F. application region (FFAR) when calculating fake yields
  - ✓ MC subtraction uncertainty
  - ✓ <u>Statistical uncertainty (Dominant, due</u> to low statistics)

# The secondary dominant background

| Fake yield (SR) | 9.45   |
|-----------------|--------|
| A.R. Stat.      | 41.38% |
| A.R. Theo.      | 4.45%  |
| F.F. Stat.      | 3.07%  |
| F.F. Theo.      | 4.87%  |
| Fake source     | 50.32% |
| Total           | 66.21% |
|                 |        |

# Statistical analysis

 $\triangleright$  Simultaneous fit of the SR and CR, with floating normalization factor  $\mu_b$  for the dominant SM 4l background.

[POI:  $\mu_s$  (signal strength); NPs: Systematics  $\theta_i$ , normalization factor  $\mu_b$  for BKG]

$$L(\mu; \sigma) = \prod_{j}^{syst. \, num} L_{gauss}(\theta_j) \prod_{i}^{bins} L_{poiss} (N_{data} \mid \mu_s s(\theta_j) + \mu_b b(\theta_j))_i$$

- ightharpoonup Discriminant:  $\overline{m}_{ll} = \frac{1}{2}(m_{l1l2} + m_{l3l4})$

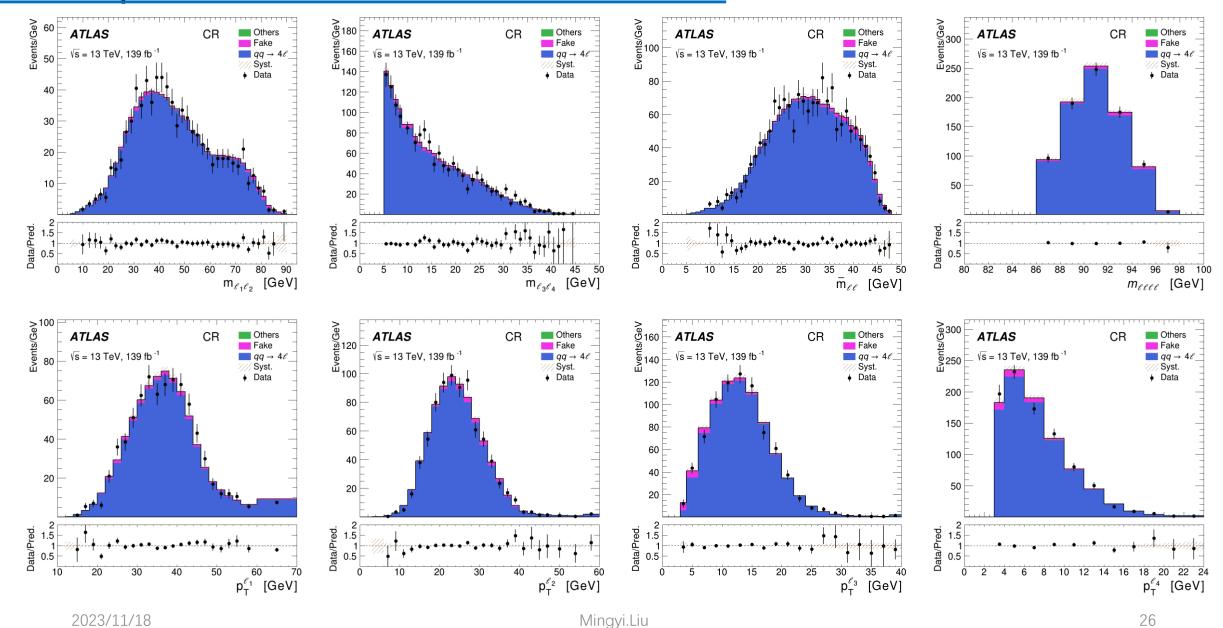
1 GeV Bin width



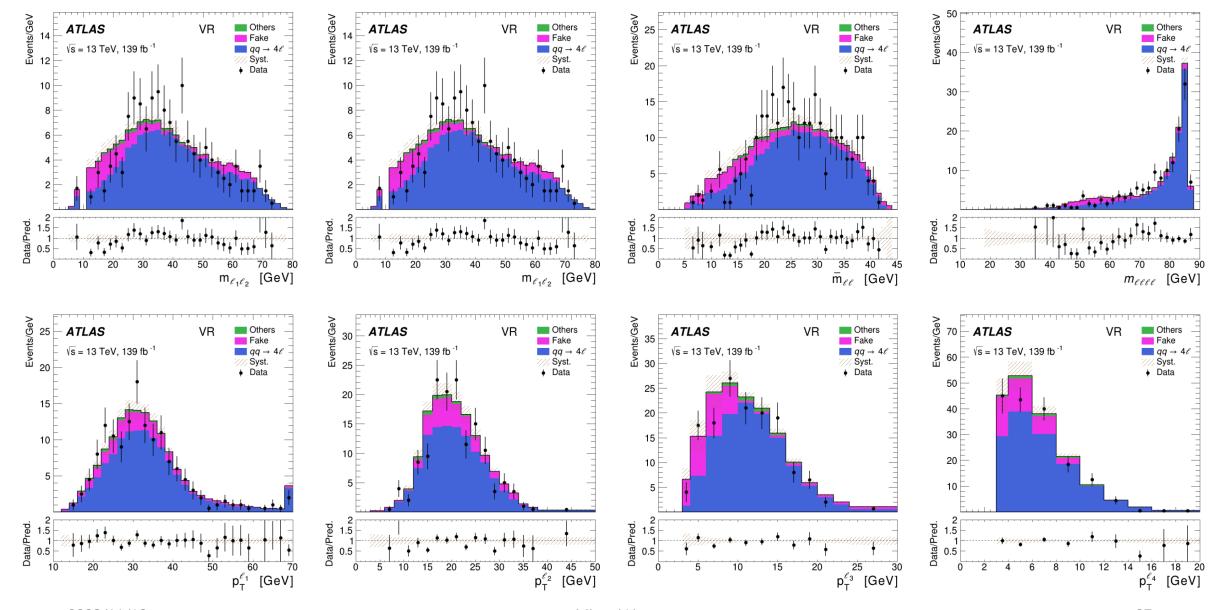
Finning (GeV):  $\Upsilon(b\bar{b})$  window [0,5,6,7,8,8.76,11.105,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,

42,43,44,45,46,47,48,49,50]

## Systematics for prompt processes


#### **Experimental Uncertainties**

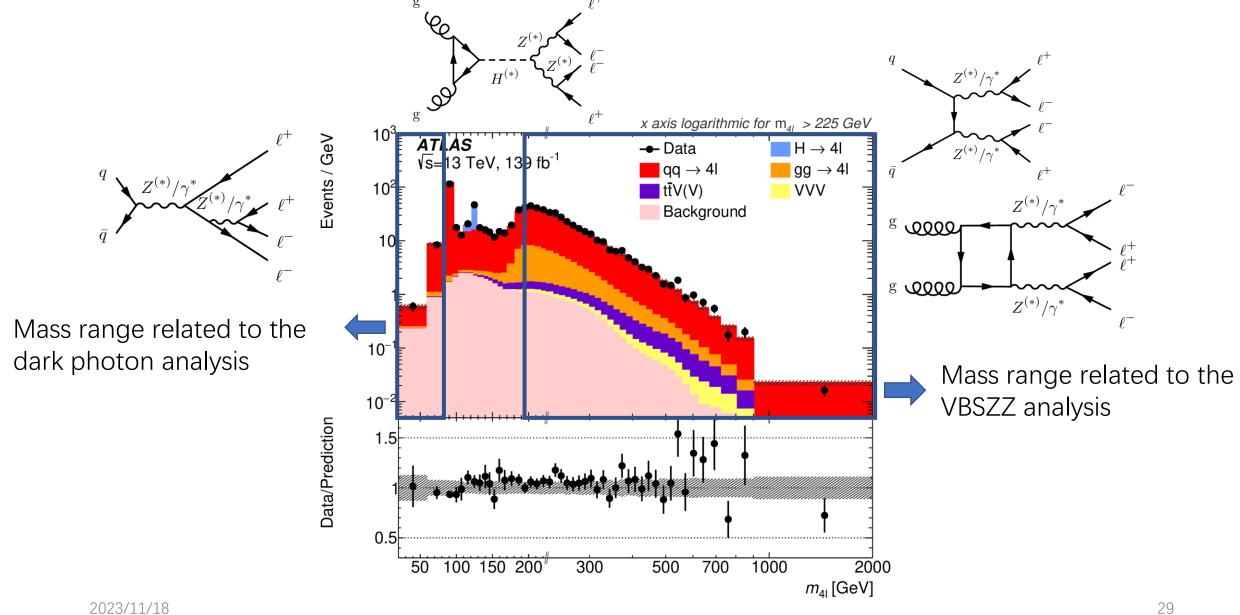
- > Detecting uncertainties for electrons and muons (Identification, energy resolution ...)
- > Trigger S.F. uncertainties
- > Pileup, luminosity uncertainties
- ➤ Total Exp. uncertainty ~ 7% (5%) for SGNs (BKGs) in the SR.


#### Theoretical Uncertainties

- PDF +  $\alpha_S$  Unc.
  - > Envelope: NNPDF3.0 (100 internal variations, standard deviation) and CT14 (Nominal)
  - > ~2% for both SGNs and BKGs
- QCD scale Unc.
  - $\triangleright$  Envelope:  $\{\mu_R, \mu_F\} = \{0.5, 0.5\}, \{0.5, 1.0\}, \{1.0, 0.5\}, \{1.0, 2.0\}, \{2.0, 1.0\}, \{2.0, 2.0\}$
  - $\rightarrow$  ~14% for SGNs, ~8% (5%) for qqZZ in the SR (CR)
- Parton showering uncertainty
  - For SGNs: Pythia8 (A14) vs Herwig7 (UE-MMHT) (Truth level), very tiny, ~ 1%
  - For qqZZ: Shape comparison between the Sherpa sample and the Powheg+Pythia8 sample (conservative), ~10% (2%) in the SR (CR)


# Dark photon: CR distributions




# Dark photon: VR distributions



### Dark photon: SR distributions



# 41 mass spectrum by the ATLAS



2023/11/18