

Optimal transport solutions for pileup mitigation at hadron colliders

L. Gouskos ¹, **F. lemmi** ², S. Liechti ⁴, B. Maier ¹

V. Mikuni ³, H. Qu ¹

CLHCP, November 19th, 2023

Based on PhysRevD.108.096003

¹ European Organization for Nuclear Research (CERN)

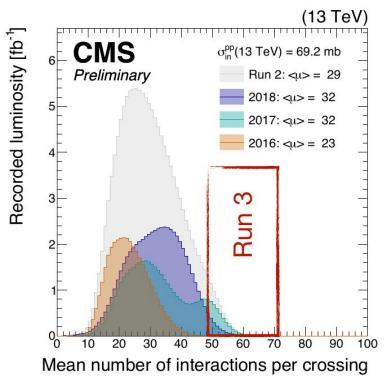
² Institute of High Energy Physics (<u>IHEP</u>), Beijing

³ National Energy Research Scientific Computing Center (NERSC), Berkeley

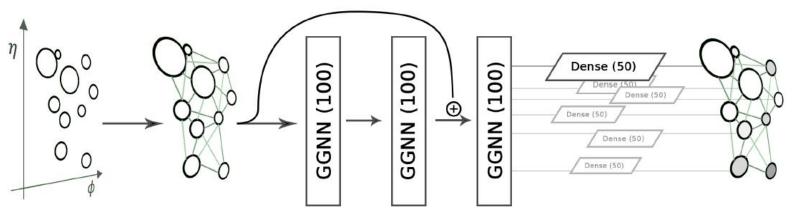
⁴ University of Zurich (<u>UZH</u>), Zurich

Introduction: state of the art in PU mitigation

- Pileup is ubiquitous at hadron colliders
- PU doubled in Run3 wrt Run2
 - Will reach <PU> = 140 at HL-LHC
- State of the art PU mitigation in CMS: PUPPI
 - Cut based algorithm
 - For each particle, check activity in a small cone around it
 - Obtain a per-particle probability to be LV
- Attempting something similar with machine learning sounds like a natural choice



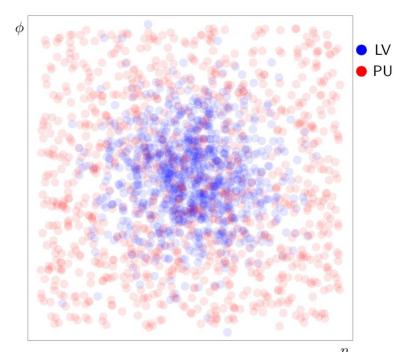
Introduction: ML for PU mitigation



- Published literature demonstrates ML can drastically improve over current PU mitigation techniques [1], [2], [3]
- In particular, graph neural networks proved to be very effective
 - o For each particle, gather information about its neighbors in a much more expressive way
- **General strategy: fully-supervised models** trained on Delphes simulation using per-particle truth labels

Introduction: ML for PU mitigation

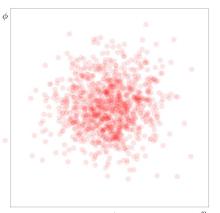
- Critical issue: per-particle labels are not available in Geant4-based simulations
 - Previous approaches can't be implemented in ATLAS or CMS
- Recently it has been proposed to train on charged and evaluate on neutrals [1]
 - Can be done in Geant4 full-sim
 - Relies on extrapolations
 - o Charged->neutral, central->forward
- We developed a ML-based PU mitigation strategy not relying on labels or extrapolations



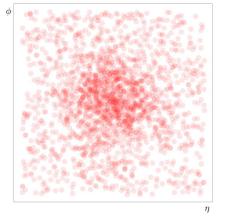
Not available in ATLASⁿ or CMS!

Optimal transport for PU mitigation

- Optimal transport (OT) can measure the
 "distance" between probability distributions
- Consider a sample of events, generated twice, with and without PU (X_{PLI} and X_{no-PLI})
 - Stores the same events, but one has PU superimposed
- Train a network to minimize the distance between PU and no-PU samples
 - Use Attention-Based Cloud network: ABCNet [1]
- Output of the network is a collection of per-particle weights ω
- Loss function is: OT (X_{no-PU}, ω * X_{PU})
- We don't need any per-particle labels
- TOTAL: training optimal transport with attention learning



No-PU



Loss function

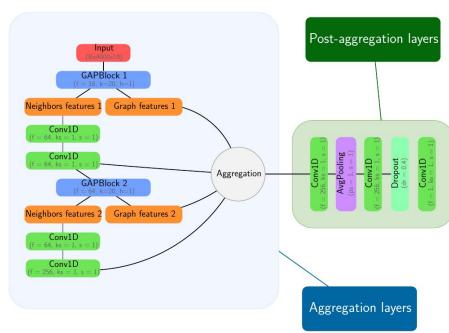
- Optimal transport focuses on optimal matching between individual particles in PU and no-PU samples
 - No guarantee that energy is conserved between the two
- Possible to add an energy constraint term to the loss
 - o Enforces energies in the PU and no-PU samples to be similar
- Final loss function

$$\mathcal{L} = \mathsf{OT}(\vec{x}_p \cdot \vec{\omega}, \vec{x}_{np}) + \lambda \times \mathsf{MSE}(\mathsf{MET}(\vec{x}_p \cdot \vec{\omega}), \mathsf{MET}(\vec{x}_{np}))$$

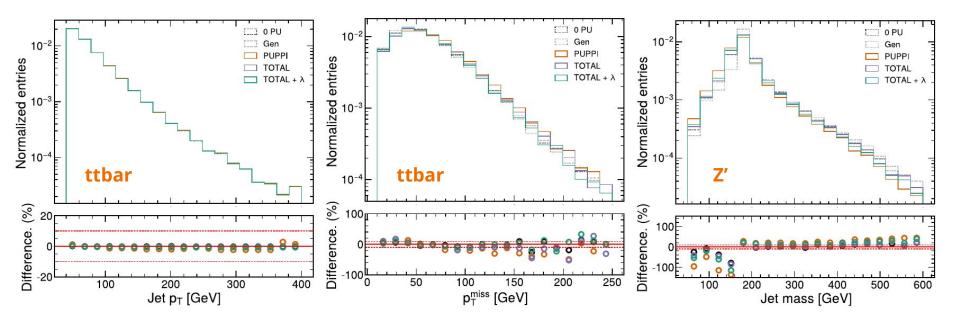
where $\vec{x}_p = PU$ sample; $\vec{x}_{np} = \text{no-PU}$ sample; MSE = mean squared error

The model

- Delphes simulation of Phase2 CMS detector
- 9 input features
 - Detailed list in backup
- Train with mixture of QCD, ttbar and VBF(H->inv.) events
- Train with Phase2 PU profile
 - o <PU> = 140
- Output is per particle weight
- Use such output à-la-PUPPI
 - Reweight each PF candidate
 4-momentum
- From weighted PF collection,
 cluster jet and MET collections

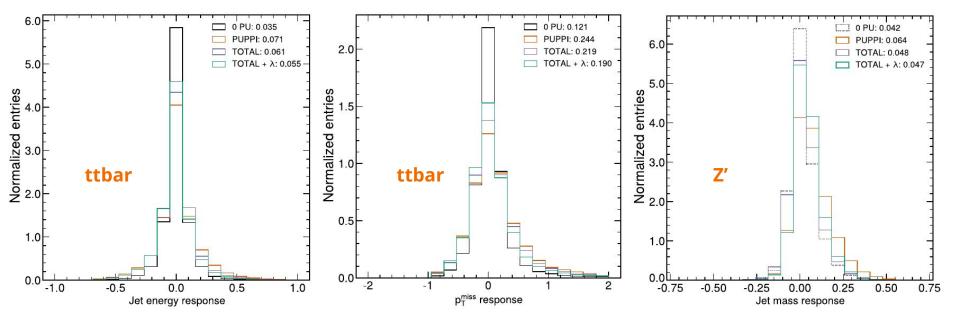


Event-level distributions



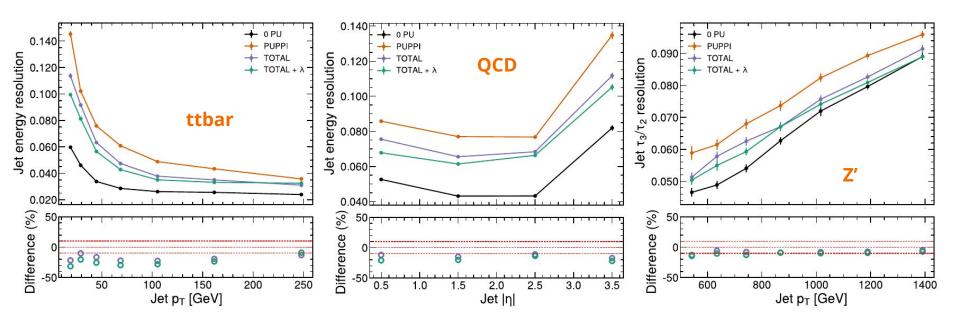
 Event level distributions show no distortions wrt gen level, no-PU and PUPPI

Inclusive resolutions



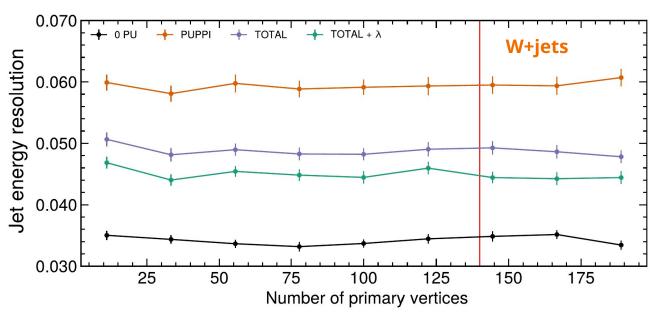
- Inclusive resolutions for variables shown in previous slide
- TOTAL resolution can be up to 25% better than PUPPI

Differential resolutions



- Resolutions as a function of jet p_{T} and η
- TOTAL resolution can be up to 30% better than PUPPI

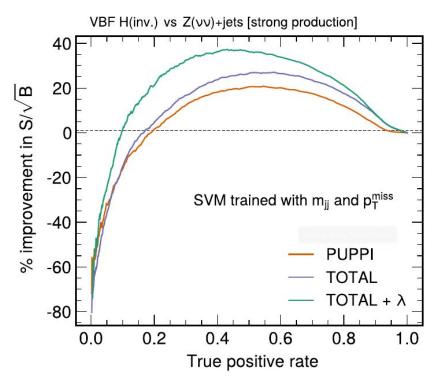
Robustness



- Evaluate on W+jets with flat PU profile: both conditions not seen during training
- TOTAL is robust: correctly generalizes to new processes and PU conditions

Searches for new physics

- Search for enhanced Higgs to invisible rates
- Signal: VBF H(dark matter)
- Background: VBF Z(νν)
- Train linear classifier using MET and dijet mass
- TOTAL results in ~15% improvement in S/sqrt(B) wrt PUPPI



Conclusions

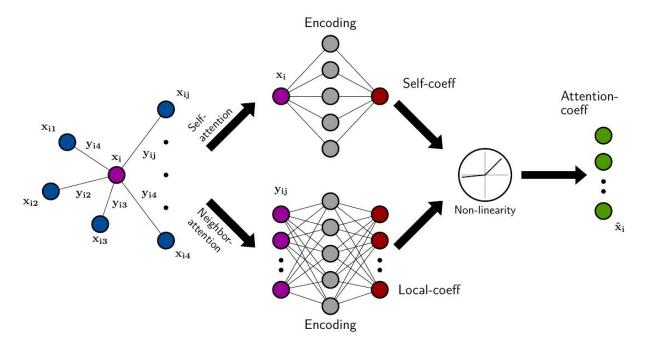
- We developed a novel algorithm to reject PU particles that considerably improves over the state-of-the-art
- Unlike competing algorithms, it does not rely on per-particle truth labels
 - Per-particle truth not available in Geant4
- No need for truth labels: TOTAL can be ported to ATLAS/CMS
- **TOTAL**: training optimal transport with attention learning
- Learning happens through optimal transport in a self-supervised way
- TOTAL proof of concept can be extended to a wide class of denoising problems
 - Only relies on reliable simulation of signal and noise

Thank you!

Questions/comments? You can check the paper PhysRevD.108.096003 and/or get in touch with me (fabio.iemmi@cern.ch)

Backup slides

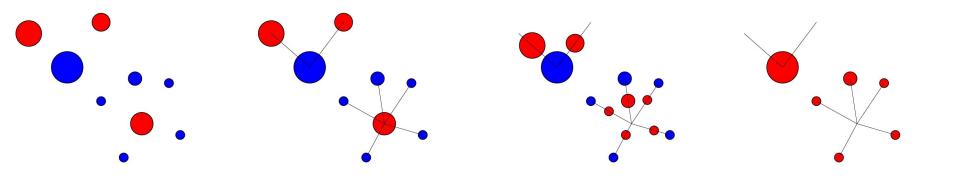
Attention Based Cloud network – ABCNet



- ABCNet: graph network enhanced with attention mechanisms
- Want to try ABCNet? Code is online on GitLab [1]
 - Custom ABCNet layers are Keras-Functional-API compatible and ready to run

Optimal-transport-based loss function

- Earth mover's distance (AKA Wasserstein distance): minimum work required to move earth to fill holes
- With EMD you can match 3D distributions (e.g., earth and holes)
- Abstracting this, we want to match (multi)-D particle distributions
- In particular, we want to match $\boldsymbol{\omega}$ * \boldsymbol{X}_{PU} and \boldsymbol{X}_{no-PU}



Optimal-transport-based loss function

- EMD can only be computed (approximately) in 3D; want to match multi-D distributions instead
- Solution: OT has a closed mathematical form in 1D
- After some math, we can show that 1D OT can be reduced to a sorting problem
 - Fast and trivial to solve
- Take input n-D space and project ("slice") it onto n-D, unit-radius sphere
- Solve 1D OT for the projection: Sliced Wasserstein Distance (SWD)

