

Measurement of ZZ cross-sections in the four-lepton final state in *pp* collisions at $\sqrt{s} = 13.6$ TeV with the ATLAS experiment

Xingyu Wu

University of Science and Technology of China

The 9th China LHC Physics Workshop, Shanghai (CLHCP2023)

Introduction

- The first look of diboson process with LHC Run-3 data.
 - Full 2022 LHC Run-3 data (L = 29 fb^{-1}).
- Run-3 data taking status
 - Expected luminosity $\sim 60 \text{ fb}^{-1}$ good for physics.
- Measurement of on-shell $ZZ \rightarrow 4l$ production on LHC.
 - $q\overline{q} \rightarrow ZZ$
 - gg \rightarrow ZZ
 - EW $q\overline{q} \rightarrow ZZ + 2j$

2023/11/19

Motivation

- Precision test of Standard Model under an unprecedented energy.
- 4-lepton clean final state, with low background (\sim 5%).
- Precision measurement of on-shell $ZZ \rightarrow 4l$ $(l = e, \mu)$ decay mode.
 - Differential and inclusive fiducial cross sections
 - Total cross sections

Fiducial & total phase space

- Forming the phase spaces with electrons and muons.
- Phase space definition highly rely on the detector acceptance.
- Focusing on the on-shell ZZ production.

	Fiducial phase space	Total lepton phase space		
Muon selection	Bare, $p_{\rm T} > 5 {\rm GeV}$, $ \eta < 2.5$	Born] .	
Electron selection	Dressed, $p_{\rm T} > 7 \text{ GeV}$, $ \eta < 2.47$	Born		Define with born leptons
Four-lepton signature	\geq 2 SFOC pairs	\geq 2 SFOC pairs		
Lepton kinematics	$p_{\rm T} > 27/10 \; {\rm GeV}$			Remove lenton out
Lepton separation	$\Delta R(\ell_i, \ell_j) > 0.05$			Kennove repton cut
Low-mass $\ell^+\ell^-$ veto	$m_{ij} > 5 \text{ GeV}$	$m_{ij} > 5 \text{ GeV}$		and ZZ on-shell cut
Z mass window	$66 < m_{\ell\ell,1}, m_{\ell\ell,2} < 116 \text{ GeV}$	$66 < m_{\ell\ell,1}, m_{\ell\ell,2} < 116 \text{ GeV}$		
ZZ on-shell	$m_{4l} > 180 \text{ GeV}$		J	

Table 1: Definition of the fiducial and total lepton phase-space regions.

SFOC: same flavor opposite charge.

• The measured data is <u>unfolded</u> to compare with the state-of-art prediction at fiducial level.

Bayesian unfolding method

Signal & background estimation

- Signal modellings
 - $q\bar{q} \rightarrow ZZ$ (Sherpa); $gg \rightarrow ZZ$ (Sherpa); EW $q\bar{q} \rightarrow ZZ + 2j$ (Powheg+Pythia) processes.
 - Using MC estimations.
- Irreducible background (~1%)
 - VVV (Sherpa) and ttZ (Sherpa) processes.
 - Using MC estimations.
- Fake background (~4%)
 - lllv (Sherpa), Z + jets (Sherpa) and $t\bar{t}$ (Powheg+Pythia) processes.
 - Estimated with data-driven (fake factor) method.
 - Fake yields are validated in the validation region, in good agreement.

Systematics

- Theoretical uncertainties
 - PDF + α_s , QCD scale variations and parton shower uncertainties.
 - Conservative variations on ZZjj ($\pm 20\%$), VVV ($\pm 10\%$) and t $\overline{t}Z$ ($\pm 15\%$) cross sections.
- Experimental systematics
 - Lepton momentum resolution and energy scale.
 - Lepton identification, isolation, reconstruction and trigger efficiency.
 - Pileup reweighting.
 - Luminosity.
- Fake background
 - Statistical uncertainty.
 - Fake factor systematic uncertainty.
 - MC systematic uncertainty.

Largest contribution from electron ID.

Data/MC comparison in signal region

- The m_{4l} , $p_{T,4l}$ spectrums are derived at reconstructed level.
- Generally in good agreement with limited statistics.

Reconstructed level yields comparison

Process	Yield		
qqZZ	515 ± 50		
ggZZ	74 ± 44		
ZZjj	4.7 ± 1.0		
ttll	5.5 ± 0.8		
triboson	2.1 ± 0.2		
Fake	25.4 ± 8.1		
Total	626 ± 88		
Data 2022	625		

Inclusive fiducial cross section

- $\sigma_{fid.} = 36.7 \pm 1.6 \text{ (stat.)} \pm 1.5 \text{ (sys.)} \pm 0.8 \text{ (lumi)} \text{ fb}$
- Agree with the theoretical predictions within uncertainties.

Source	Relative uncertainty(%)	
Data statistical uncertainty	4.2	
MC statistical uncertainty	0.3	
Luminosity	2.2	
Lepton momentum	0.2	
Lepton efficiency	3.7	
Background	1.6	
Theoretical uncertainty	1.0	
Total	6.3	

Uncertainty breakdown on $\sigma_{fid.}$

8

Total cross section

- Total phase space definition targeting on-shell ZZ with 66GeV $< m_{12}, m_{34} < 116$ GeV.
- $\sigma_{total} = 16.8 \pm 0.7 \text{ (stat.)} \pm 0.7 \text{ (sys.)} \pm 0.4 \text{ (lumi) pb}$

Differential cross sections

- Using Bayesian unfolding method to correct the detector effects.
- Fiducial level data/MC comparison with 2 observables: m_{4l} , $p_{T,4l}$.
- Good agreement is shown at up to NNLO QCD + NLO EW order with limited statistics.
 - Different MC predictions at different accuracies are provided.

MC predictions provided with Sherpa/Powheg and MATRIX

Summary

- First Run-3 ZZ results are reported.
 - One of the few fresh Run-3 results.
 - ZZ differential fiducial cross-sections as a function of m_{4l} and $p_{T,4l}$ are measured.

13.6TeV!

- ZZ inclusive fiducial and total cross sections are measured.
- Good agreement is shown with the limited statistics.
- The observed data agree with the state-of-art MC simulation at up to NNLO QCD + NLO EW accuracy.

	Measurement	MC prediction	MATRIX prediction
Fiducial	$36.7 \pm 1.6(\text{stat}) \pm 1.5(\text{syst}) \pm 0.8(\text{lumi})$ fb	36.8 ^{+4.3} _{-3.5} fb	$36.5 \pm 0.7 \text{ fb}$
Total	$16.8 \pm 0.7(\text{stat}) \pm 0.7(\text{syst}) \pm 0.4(\text{lumi}) \text{ pb}$	17.0 ^{+1.9} _{-1.4} pb	16.7 ± 0.5 pb

First Run-3 ZZ results! arxiv: 2311.09715

