Measurements of polarization and CP properties in ZZ → 4l production with full Run2 data at ATLAS

Dongshuo Du (杜东硕)

University of Science and Technology of China

CLHCP 2023, 2023/11/19

Outline

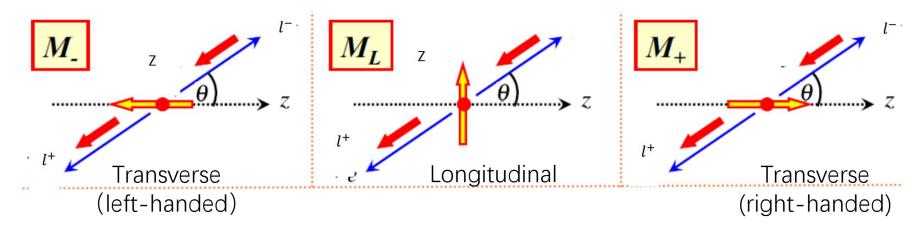
≻Motivation

➤ Measurement of ZZ joint longitudinal polarization

➤ Measurement of CP properties in ZZ production

>Summary

Motivation

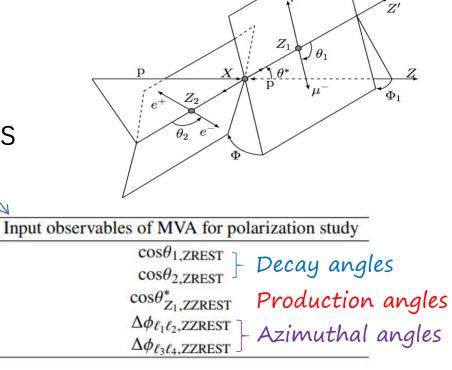


- The longitudinally polarization measurement of massive W and Z bosons is a direct way to probe the EWSB mechanism.
- The first observation of joint longitudinal polarization states of two vector bosons using WZ production process [2211.09435].
- Expected to establish the first evidence of joint longitudinal polarization states of ZZ bosons in ATLAS.
- ➤ Measurement of CP-sensitive observables in ZZ production can be used to explore the new source of CP violation in gauge boson sector.

Measurement of ZZ joint longitudinal polarization

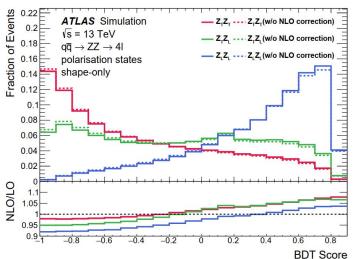
Introduction

- ➤ Goal: Establish the first evidence of joint longitudinal polarization states of ZZ bosons in ATLAS.
- ➤ Phase space: On-shell ZZ region
 - $m_{4l} > 180 \text{ GeV \&\& } |m_{ij} m_Z| < 10 \text{ GeV}$
- > Signal: Longitudinal longitudinal components (LL) in the ZZ events
 - The polarization is defined in the ZZ rest frame.
- ➤ Background: TT (Both Z bosons are transverse), TL (One Z boson is transverse and another is longitudinal polarized), ttZ, triboson (ZWW, ZZZ, ZZW) and fake(Zjets/ttbar)



Analysis strategy

- 1 To improve the sensitivity
 - ➤ Multivariate Analysis (MVA) Method: Boost decision tree (BDT) to enhance the separation power between signal and bkg
- 2 To improve the accuracy of qqZZ polarized samples
 - >NLO polarized samples are **not** available
 - ➤ Reweighted to the lastest MoCaNLO program calculation (JHEP10(2021)097)
 - NLO QCD and EW correction on the qqZZ polarized samples.
 - Loop induced ggZZ correction
- 3 To get the final results (signal strength and significance)
 - ➤ Tool: <u>TRExFitter</u>


Multivariate Analysis

- > Due to limited statistics, very challenging to extract the LL component
- ➤ Started with BDT method
 - Signal: LL
 - Background: TT+TL
- Input variables: 5 purely angular observables
- ➤ Largely improve the sensitivity
 - Significance (LO, LL vs TT+TL, stat only): 4.38 σ
 - For comparison, single angular variable: 2.58 σ

The higher order polarized samples

- ➤ Only LO polarized qqZZ and inclusive ggZZ samples available
- ➤ A three steps reweighting method is established to incorporate the higher order correction using MoCaNLO program (JHEP10(2021)097)
 - Step1: 1D reweighting for each individual polarization state
 - Step2: 1D reweighting for the interference effect
 - Step3: 2D reweighting for the residual higher order corrections
- The BDT distribution comparison before and after reweighting procedure

The shape impact from this reweighting proceduce on each polarized state with a maximum variation of about 10% for qqZZ sample

NLO correction and interference effect

- >A three steps reweighting method is used to consider the NLO correction
 - Step1: 1D reweighting for each individual polarization state
 - √ qqZZ process:
 - \blacksquare Reweighting as a function of $\cos \theta_1$

* "MoCaNLO": differential xs from theorists' calculation

- The impact of the 1D reweighting corrections on the BDT discriminant is mostly of about 20% on the normalisation, and the shape variation is only of 2 − 4%.
- ☐ The difference induced by different reweighting variables is treated as a systematic uncertainty

NLO correction and interference effect

- Step2: 1D reweighting for the interference effect
 - ✓ The simulated polarized samples do not consider the interference effects which is not negligible
 - ✓ Interference effect:
 - \blacksquare Reweighting as a function of $\cos \theta_1$

$$InterfNLO^{reco} = \frac{MoCaNLO^{parton}_{incl} - \sum_{pol} MoCaNLO^{parton}_{pol}}{MoCaNLO^{parton}_{incl}} \times SherpaNLO^{reco}_{incl}$$

- ☐ The difference caused by reweighting variable choice is not negligible and considered as modeling uncertainty
- Step3: 2D reweighting for the residual higher order corrections
 - ✓ To consider NLO correction modelling effect (reweighting with 1 variable can hardly catch full structure of high-order contributions)
 - \checkmark Reweighting as a function of $\cos \theta_Z^*$ and $\Delta \phi_{l1l2}$

$$NLO_{final}^{reco}_{pol} = \frac{SherpaNLO - InterfNLO}{\sum_{pol} NLO_{pol}^{reco}} \times NLO_{pol}^{reco}$$

✓ The impact of this 2D reweighting on the BDT discriminant is mostly on the shape with a maximum variation of about 10%.

ggZZ polarized sample and other NLO uncertainty

➤ ggZZ polarized samples

- Reweighting the inclusive ggZZ samples to get different polarization states
- Differential fraction for each component is taken from theorists' work

$$ggZZ_{pol}^{reco} = \frac{MoCaNLO_{pol}^{ggZZ,parton}}{MoCaNLO_{incl}^{ggZZ,parton}} \times Sherpa_{incl}^{ggZZ,reco}$$

- Interference effect is negligible for ggZZ process
- Alternative way: reweighting like the qqZZ, the difference taken as systematic uncertainty

$$ggZZ_{LO,polarized}^{reco} = \frac{MoCaNLO_{Polarized}^{ggZZLO,Parton}}{MadGraph012LO_{Polarized}^{qqZZ,Particle}} \times \frac{Sherpa_NLO_{Inclusive}^{Particle}}{MoCaNLO_{Inclusive}^{Parton}} \times MadGraph012LO_{Polarized}^{qqZZ,Reco}$$

> NLO theoretical uncertainties:

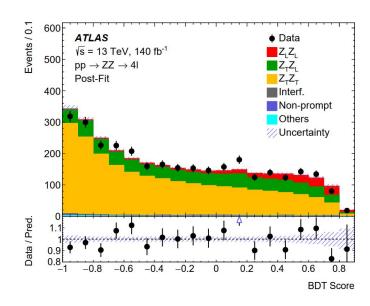
- Besides the systematics mentioned in NLO correction procedure, still theoretical uncertainties for NLO polarized samples (inputs also from theorists' work):
 - NLO EW: difference between multiplicative & additive methods
 - NLO QCD for qqZZ and ggZZ: 7-point variation with NLO correction

Systematics uncertainties

> Experimental uncertainties

- Lepton ID, reconstruction and isolation efficiency
- 20010112, 100011011 4011011 4114 1001411011 011101101
- Trigger efficiency
- Lepton resolution and scale
- ➤ Theoretical uncertainties
 - QCD sclale
 - PDF+ α_S
 - Parton shower
 - ttV and VVV cross-section variation
 - Variation related to NLO k-factor variation for ggZZ

- Pileup scale
- Luminosity


- Variation related to EWK NLO reweighting for inclusive qqZZ
- Uncertainties related to the higher order correction
 - ☐ Interference modeling
 - NLO redicual non-closure uncertainties
 - NLO EW uncertainty
 - NLO reweighting observable choice
 - ggZZ modeling uncertainty

Fake related uncertainties

Results

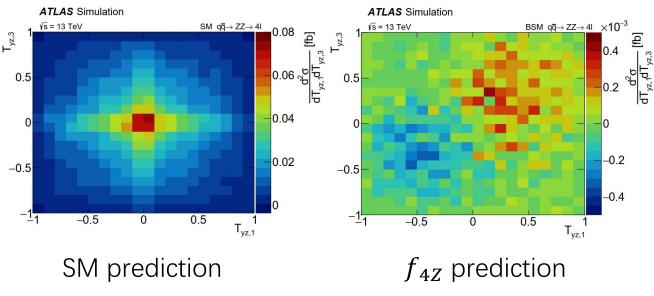
- ➤ Signal strength:
 - $\mu_{LL} = 1.15 \pm 0.27 (stat.) \pm 0.11 (syst.)$
- \triangleright Significance: **4.3** σ (3.8 σ)

Evidence established

The fiducial cross-section of $Z_L Z_L$ process is measured as 2.44 ± 0.59 fb, consistent with SM prediction 2.09 ± 0.10 fb.

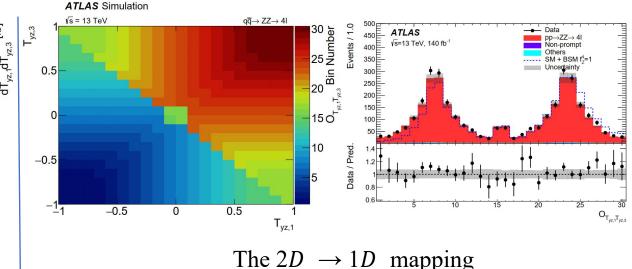
Contribution	Relative uncertainty [%]
Total	24
Data statistical uncertainty	23
Total systematic uncertainty	8.8
MC statistical uncertainty	1.7
Theoretical systematic uncertainties	
$q\bar{q} \rightarrow ZZ$ interference modelling	6.9
NLO reweighting observable choice for $q\bar{q} \rightarrow ZZ$	3.7
PDF, α_s and parton shower for $q\bar{q} \rightarrow ZZ$	2.2
NLO reweighting non-closure	1.0
QCD scale for $q\bar{q} \rightarrow ZZ$	0.2
NLO EW corrections for $q\bar{q} \rightarrow ZZ$	0.2
$gg \rightarrow ZZ$ modelling	1.4
Experimental systematic uncertainties	
Luminosity	0.8
Muons	0.6
Electrons	0.4
Non-prompt background	0.3
Pile-up reweighting	0.3
Triboson and $t\bar{t}Z$ normalisations	0.1

This analysis still dominant by statistical uncertainty


Measurement of CP properties in ZZ production

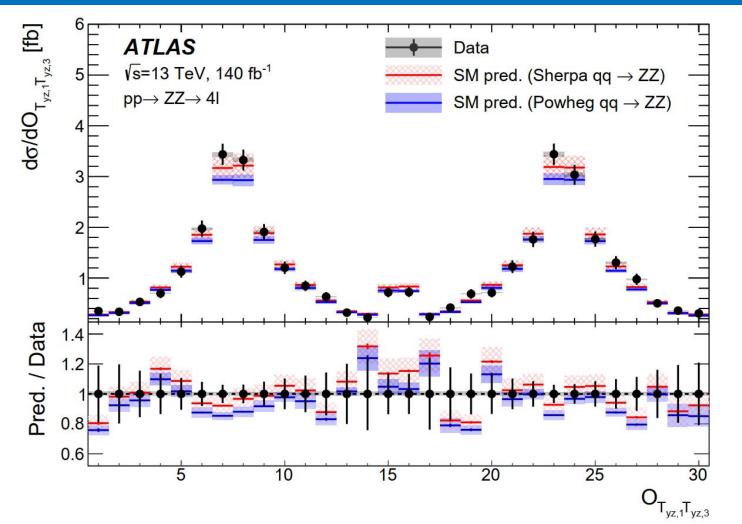
Introduction

- ➤ Goal: Search for CP-violation in ZZ(4I) on-shell events
- Focus on aTGC which appears at dim-8 and onward
 - aTGC: ZZZ, yZZ (PLB817(2021)136311)
 - \checkmark CP-conserving: $f_{5\gamma}$, f_{5Z} , h_{3Z} , h_{4Z}
 - \checkmark CP-violating: $f_{4\nu}$, f_{4Z} , h_{1Z} , h_{2Z}
- > "f" operators predominately sensitive in on-shell ZZ region
- > Only interference term considered to constrain anomalous CP-odd neutral triple gauge couplings ($f_{4\nu}$ and f_{4z})
 - Quadratic term will violates the unitarity and will also not induce asymmetries in the discriminating variable
- > Use CP odd sensitive observable to do the constraint


Analysis strategy

- \triangleright Construct CP sensitive angular observable $(o_{T_{yz,1}T_{yz,3}})$ with the polar and azimuthal angles of Z boson
 - Angular observable: $T_{yz,1(3)} = \sin \emptyset_{1(3)} * \cos \theta_{1(3)}$

> Use unfolding to correct the detector effects


- Bayesian iteration unfolding method
- Iteration number 2 is used

 The measured data agree closely with the prediction at the reco level

• The bins 1 to 7 and 24 to 30 are the most sensitivity bins

Results

- ➤ The measured cross-section from the data agrees closely with both SM predicted cross-sections (Sherpa and Powheg)
- The differential cross-section of a CP-sensitive angular observable ($o_{T_{yz_1}T_{yz_2}}$) used to constrain anomalous CP-odd neutral triple gauge couplings.

aNTCC parameter	Interference only		
aNTGC parameter	Expected	Observed	
f_Z^4	[-0.16, 0.16]	[-0.12, 0.20]	
f_{γ}^4	[-0.30, 0.30]	[-0.34, 0.28]	

The first constraints on CP-odd aNTGC parameters using only linear interference terms with a dedicated CP-sensitive observable

Summary

- \triangleright The polarization and CP properties in ZZ \rightarrow 4l production are measured with full Run2 data at ATLAS
- ➤ Established the first evidence of joint longitudinal polarization states of ZZ bosons in ATLAS.
 - Signal strength:

$$\mu_{LL} = 1.15 \pm 0.27 \text{(stat.)} \pm 0.11 \text{(syst.)}$$

- Significance: 4.3 σ (3.8 σ)
- The differential cross-section of a CP sensitive angular observable $(o_{T_{yz_1}T_{yz_2}})$ used to constrain anomalous CP-odd neutral triple gauge couplings (f_{4Z}) and f_{4Y} .

aNTCC parameter	Interference only		
aNTGC parameter	Expected	Observed	
f_Z^4	[-0.16, 0.16]	[-0.12, 0.20]	
f_{γ}^4	[-0.30, 0.30]	[-0.34, 0.28]	

Stay tuned for new Run 3 results!

Backup

Phase space and samples

- Data: Full Run2 dataset @13 TeV
- MC Samples:

LO

$qq \rightarrow ZZ \rightarrow 4l$		Generator	DSID	Cross-section (fb)
TT 0 or 1 jet	inclusive	MadGraph + Pythia 8	502354	20.486
TT 2 jets	inclusive	MadGraph + Pythia 8	502357	3.1879
TT 2 jets EW	inclusive	MadGraph + Pythia 8	502360	0.32478
TL 0 or 1 jet	inclusive	MadGraph + Pythia 8	502355	7.4671
TL 2 jets	inclusive	MadGraph + Pythia 8	502358	1.7441
TL 2 jets EW	inclusive	MadGraph + Pythia 8	502361	0.1552
LL 0 or 1 jet	inclusive	MadGraph + Pythia 8	502356	1.7441
LL 2 jets	inclusive	MadGraph + Pythia 8	502359	0.2829
LL 2 jets EW	inclusive	MadGraph + Pythia 8	502362	0.0438

Process		Generator	DSID	Cross-section fb (k-factor if not 1)	
$gg\left(\to H^{(*)}\right) \to ZZ^{(*)} \to 4\ell$	inclusive, $m_{4\ell} > 130 \text{ GeV}$	SHERPA 2.2.2	345706	10.091 (1.7)	
$pp \to W^{(*)}W^{(*)}Z^{(*)} \to 4\ell 2\nu$		SHERPA 2.2.2	364243	1.7973	
$pp \to W^{(*)}Z^{(*)}Z^{(*)} \to 5\ell 1\nu$	inclusive	SHERPA 2.2.2	364245	0.18812	
$pp \to Z^{(*)}Z^{(*)}Z^{(*)} \to 6\ell$	inclusive	SHERPA 2.2.2	364247	0.014458	
$pp \to Z^{(*)}Z^{(*)}Z^{(*)} \to 4\ell 2\nu$	inclusive	SHERPA 2.2.2	364248	0.38556	
$pp \to t\bar{t} + \ell\ell$	$t\bar{t}Z, m_{\ell\ell} > 5 \text{ GeV}$	SHERPA 2.2.0	410142	113.09 (1.09)	

qqZZ

ggZZ & Other bkg

Event selection

Category	Requirement		
Event Preselection	Fire at least one lepton trigger		
	≥ 1 vertex with 2 or more tracks		
Four-lepton signature	At least 4 leptons (e, μ)		
Lepton kinematics	$p_{\rm T} > 20$ GeV for leading two leptons		
Lepton separation	$\Delta R_{ij} > 0.05$ for any two leptons		
J/ψ -Veto	$m_{ij} > 5$ GeV for all SFOS pairs		
Trigger matching	Baseline leptons matched to at least one lepton trigger		
Quadruplet formation	At least one quadruplet with 2 Same-Flavor, Opposite-Sign (SFOS) pairs		
On-shell ZZ pair	$m_{4l} > 180 \mathrm{GeV}$		
On-shell Z boson	$ m_{ij} - m_Z < 10 \text{ GeV}$ On Shell		

The definition of angular variables

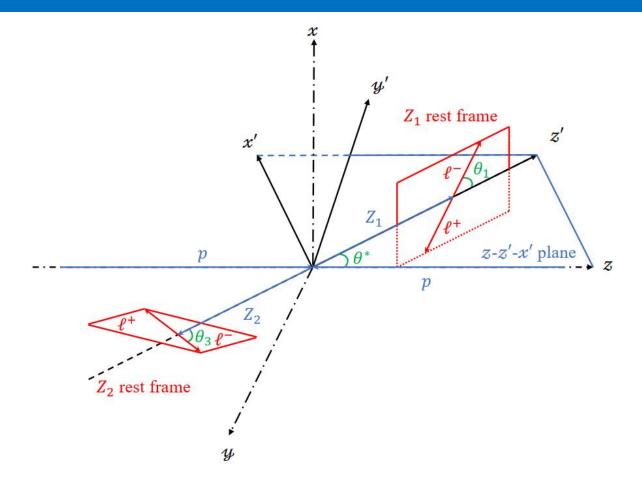
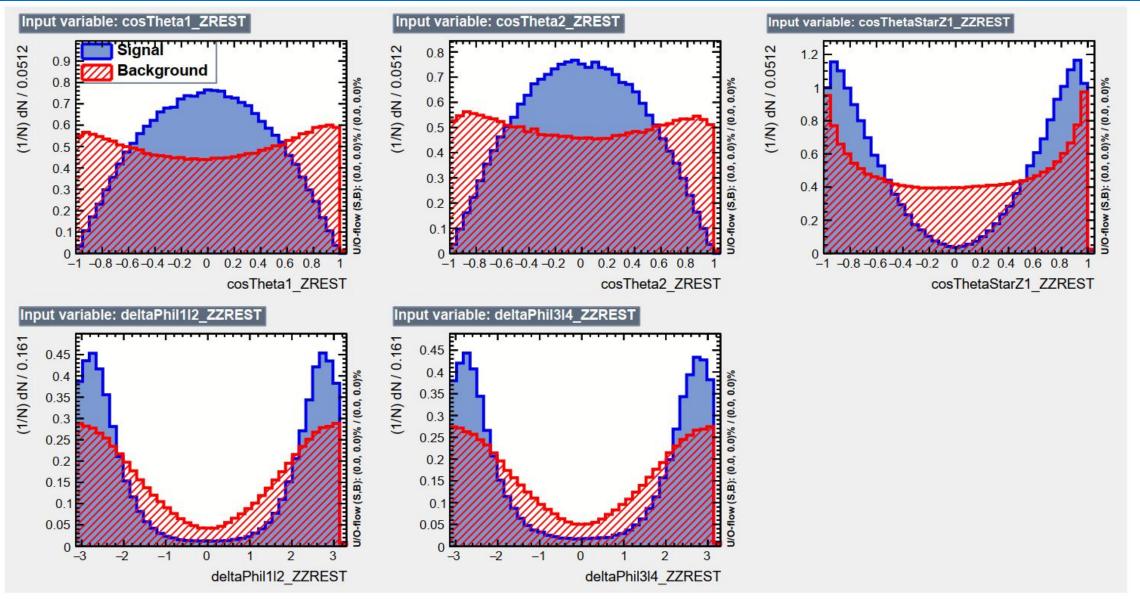
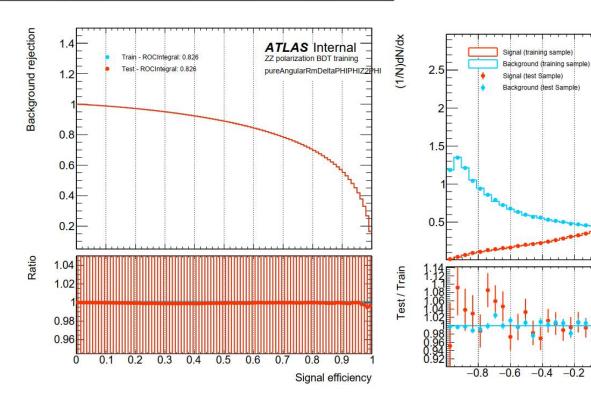
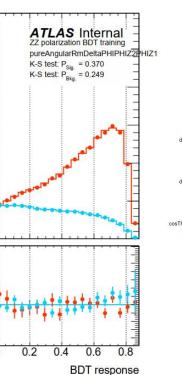
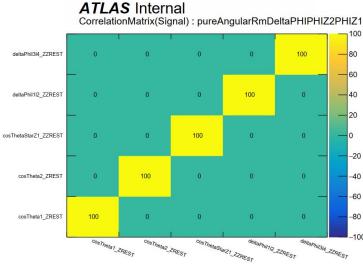



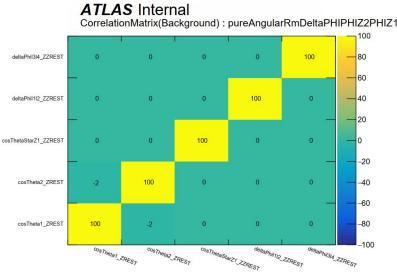
Figure 2: Definition of the angles used for the polarisation measurement and the reference frame used to define the CP-sensitive angles. The xyz-frame (dot-dashed) is the laboratory frame with the z-axis along the beam direction. The x'y'z'-frame (solid) is a new frame used to define the CP-sensitive angles. The z'-axis is defined as the direction of motion of the Z_1 boson in the four-lepton rest frame. The x'-axis defines the reaction plane containing the laboratory z-axis and the z'-axis. The right-hand rule gives the y'-axis.


Multivariate Analysis




Multivariate Analysis

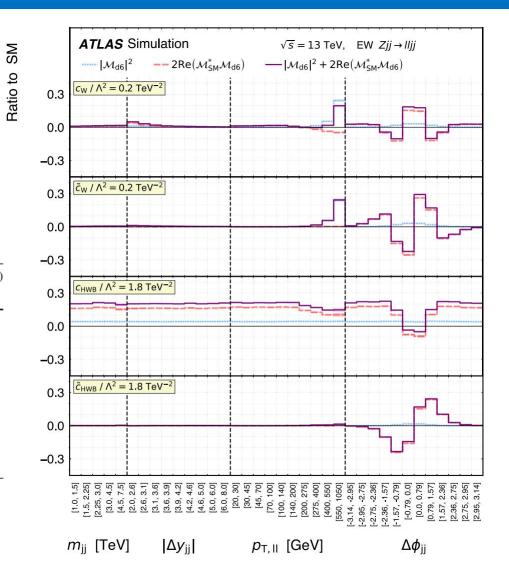
Rank	BDT observables	Importance
1	$\Delta \phi_{\ell_3\ell_4, ZZREST}$	2.231×10^{-1}
2	$\Delta \phi_{\ell_1 \ell_2, ZZREST}$	2.212×10^{-1}
3	$\cos \theta^*_{Z_1,ZZREST}$	2.086×10^{-1}
5	$\cos\theta_{1,\text{ZREST}}$	1.806×10^{-1}
6	$\cos\theta_{2, \text{ZREST}}$	1.665×10^{-1}


BDT parameters	value
NTrees	850
MaxDepth	3
MinNodeSize	1%
nCuts	100
Shrinkage	0.1

(a) correlation among observables in signal

(b) correlation among observables in background

Systematics uncertainties


- Theoretical systematics on SM MC samples
 - QCD scale
 - envelope of variation of μ_R , μ_F to 0.5 and 2 scale
 - PDF+ α_s
 - envelope of σ of 100 NNPDF3.0 variations and MMHT & CT14NNLOPDF
 - Parton Shower uncertainty for qqZZ
 - comparing the truth-born distributions of the nominal SHERPA and alternative POWHEG samples
 - ttV and VVV cross-section variation
 - a conservative flat 15% variation for ttV cross-section from the measurement
 - a conservative flat 40% variation for VVV cross-sections from the measurement
 - Variation related to EWK NLO reweighting for qqZZ
 - virtual EW correction k-factor applied on qqZZ sample
 - to account for non-factorizing effects for high QCD active events, as the size of correction
 - Variation related to NLO k-factor variation for ggZZ
 - uncertainty of NLO k-factor reweighting on ggZZ sample

Zjj analysis

- Data: Full Run2 dataset @13 TeV
- $\Delta \emptyset_{jj}$ variable is used to search for anomalous weak-boson self-interactions using dimention-six EFT

Wilson coefficient	Includes $ \mathcal{M}_{d6} ^2$	95% confidence interval [TeV ⁻²]		p-value (SM)
		Expected	Observed	
c_W/Λ^2	No	[-0.30, 0.30]	[-0.19, 0.41]	45.9%
	Yes	[-0.31, 0.29]	[-0.19, 0.41]	43.2%
\tilde{c}_W/Λ^2	No	[-0.12, 0.12]	[-0.11, 0.14]	82.0%
	Yes	[-0.12, 0.12]	[-0.11, 0.14]	81.8%
c_{HWB}/Λ^2	No	[-2.45, 2.45]	[-3.78, 1.13]	29.0%
	Yes	[-3.11, 2.10]	[-6.31, 1.01]	25.0%
$\tilde{c}_{HWB}/\Lambda^2$	No	[-1.06, 1.06]	[0.23, 2.34]	1.7%
	Yes	[-1.06, 1.06]	[0.23, 2.35]	1.6%

The results are almost unaffected with/without the pure dimension-six contributions.

