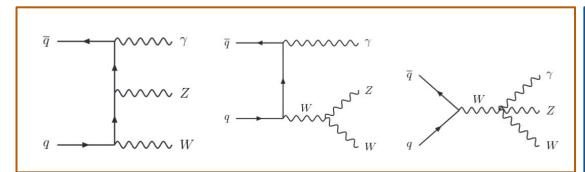
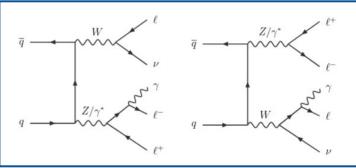

Observation of WZy production in pp collisions at 13 TeV with the ATLAS detector

arXiv: 2305.16994, accepted by PRL


Xiaocong Ai (ZZU)


CLHCP 2023, Nov 19, Shanghai

Motivation

- No observation of pp→WZy reported yet
- Goals of this analysis
 - See evidence of WZγ production
 - Measure the integral cross section at 13 TeV in a region (m(ll)>81 GeV) that enhances WZγ (ISR/TGC/QGC) and suppresses FSR (considered to be WZ)

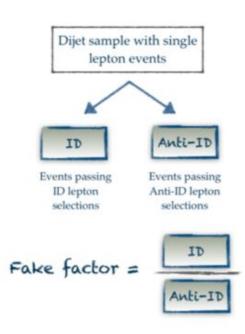
Individual contribution is not gauge invariantly separable

Event selection

- Using Run2 data
- Full leptonic states:
 μμμ, eμμ, eeμ, eee

	Photons	Electrons	Muons
	$ \eta < 2.37^{(*)}$	$ \eta < 2.47^{(*)}$	$ \eta < 2.5$
Identification	Tight	Tight	Medium
Isolation	FixedCutLoose	Gradient	PflowTight_FixedRad
Tuantaniain		$ d_0/\sigma(d_0) < 5$	$ d_0/\sigma(d_0) < 3$
Track origin	_	$ z_0\sin\theta < 0.5 \text{ mm}$	$ z_0\sin\theta <0.5$ mm
p_{T}	$p_{\rm T}^{\gamma} > 15 \text{GeV}$ $p_{\rm T}^{\ell_1, \ell_2, \ell_3} > 30, 20, 20 \text{GeV}$		
lepton veto	no "loose" lepton (Medium ID, and loose isolation for μ) with $p_T^{\ell_4} > 10$ GeV		
ℓ_Z selection	for eee, $\mu\mu\mu$: choose smallest $ m_{\ell\ell} - m_Z $		
ΔR	$\Delta R(\ell, \gamma) > 0.4$, $\Delta R(\mu, e) > 0.2$		
$ZZ(e \rightarrow \gamma)$ rejection	$ m(e_W, \gamma) - m_Z > 10 \text{ GeV}$		
missing $E_{\rm T}$	$E_{\rm T}^{\rm miss} > 20~{\rm GeV}$		
Z candidate mass	$m_{\ell\ell} > 81 \text{ GeV}$		

- Unprescaled single electron and single muon triggers
- Event vetoed if a 4th lepton passing looser critria and pT > 10 GeV is present
- MET > 20 GeV to suppress backgrounds ($ZZ\gamma$, $ZZ(e\rightarrow\gamma)$, $ZZ\gamma$)
- $m(e_{W'}, \gamma)$ away from Z to suppress ZZ($e \rightarrow \gamma$) background
- m(ll) > 81 GeV and Δ R(l, γ)>0.4 to suppress FSR contribution


Fiducial region

- The lepton and photon are required to be not from hadron or τ
- Build Z by find the same flavor, opposite-charged dilepton pair closest to Z
- Build W using the third lepton and the same flavor leading neutrino

Quantity	cut
Photon and Lepton $ \eta $ cuts	$ \eta^{\gamma} < 2.37, \eta^{\ell} < 2.5$
Photon pt cut	$p_T^{\gamma} > 15 \text{ GeV}$
Lepton pt cuts	$p_T^{\ell_1} > 30 \text{ GeV}, p_T^{\ell_2}, p_T^{\ell_3} > 20 \text{ GeV}, p_T^{\nu} > 20 \text{ GeV}$
Photon isolation	$E_T^{cone20}/E_T^{\gamma} < 0.07$
Overlap Removal	$\Delta R(l, \gamma) > 0.4$
Mass cuts	$m_{\ell\ell} > 81 \text{ GeV}$

Background estimation

- Non-prompt lepton (jet→l) or photon (jet→γ) background
 - Data driven estimation based on fake factor of lepton-like/photon-like jet
- ZZγ (including ZZ with FSR γ) and ZZ with electron faking photon (e→γ)
 - MC estimation with dedicated CRs
- WZ+pileup γ
 - Overlay MC
- Zүү (ү→e)
 - MC estimation

Separation between ZZ(jet $\rightarrow\gamma$) and ZZ(e $\rightarrow\gamma$) is based on truth information of selected photon

Non-prompt background

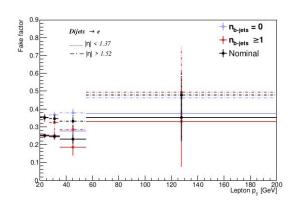
$$\begin{split} N_{X}^{data} &= \sum_{i} (N_{X,i}^{prompt} + N_{X,i}^{non-prompt}) \\ N_{X,i}^{prompt} &= \mu_{sig} \cdot N_{X,i}^{WZ\gamma} + \mu_{ZZ\gamma} \cdot N_{X,i}^{ZZ\gamma} + \mu_{ZZ(e \to \gamma)} \cdot N_{X,i}^{ZZ(e \to \gamma)} + N_{X,i}^{Z\gamma\gamma} + N_{X,i}^{Pile-up \ \gamma} \\ F_{i}^{\ell} &= \frac{N_{A,i}^{dijet}}{N_{B,i}^{dijet}} = \frac{N_{C,i}^{dijet}}{N_{D,i}^{dijet}} \\ F_{i}^{\gamma} &= \frac{N_{A,i}^{Z+jets}}{N_{C,i}^{Z+jets}} = \frac{N_{B,i}^{dijet}}{N_{C,i}^{Z+jets}} \end{split}$$

"Loose" lepton	В	D
Signal leptons "Loose" lepton	Α	С

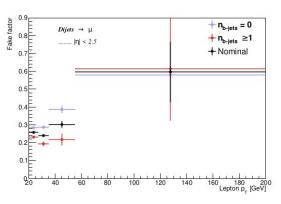
Signal photon "Loose" photon

$$N_{A}^{non-prompt} = \sum_{i} F_{i}^{\ell} \cdot (N_{B,i}^{data} - N_{B,i}^{prompt}) + \sum_{j} F_{j}^{\gamma} (N_{C,j}^{data} - N_{C,j}^{prompt}) - \sum_{i,j} F_{i}^{\ell} F_{j}^{\gamma} (N_{D,i,j}^{data} - N_{D,i,j}^{prompt})$$

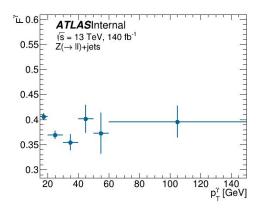
X= A, B, C, D, i(j) means the lepton(photon) pt/eta/flavor bin number


F_ι (F_γ) is the fake factor of lepton-like(photon-like) jet
 Denoted as "Lepton (photon) fake factor"

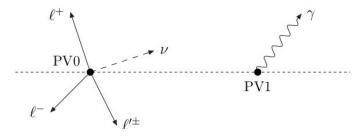
- Determined from dijet (Z+jets) events


Determined lepton&photon fake factor

- Lepton fake factor is derived separately with b jet requirement (b-jets >= 1) and b jet veto (b-jets = 0). The average between N_{b-jets} = 0 and N_{b-jets} >= 1 is used as the nominal value
- Integral value of photon fake factor used: $F_{V} = 0.399 + / 0.030$


Electron fake factor

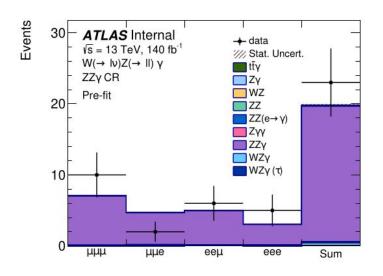
Muon fake factor


Photon fake factor

Pile-up γ estimation

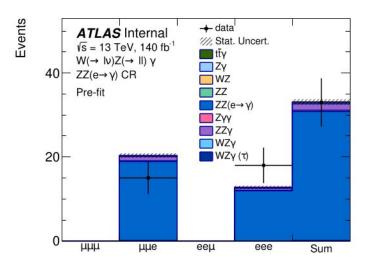
- Using Overlay MC method:
 - Simulate the WZ+pile-up γ at truth-level, N^{FR}_{WZ+v}
 - Apply detector efficiency (C_{WZ+γ}) correction to the overlayed sample

	Overlay MC
$WZ+\gamma$	1.62 ± 0.60
$(WZ)_{\tau} + \gamma$	0.02 ± 0.02
$(WZ)_{\text{bgd}} + \gamma$	0.27 ± 0.27
sum (total prompt)	1.91 ± 0.68


Source	Relative uncertainty	
MC event statistics	2.5%	
σ_{γ} scale variations	28%	
σ_{γ} PDF $\oplus \alpha_{\rm s}$	2.4%	
σ_{WZ} (ATLAS measurement)	4.6%	
Modelling of $WZ+\gamma$ pileup events	16%	
Detector efficiency	3.3%	
Integrated luminosity	1.7%	
Total uncertainty	33%	
$(WZ)_{\text{bgd}} + \gamma \text{ component}$	100% (33% corr.)	
Total uncertainty	36%	

Dominant sys. from γ +jets modelling and WZ+pile-up γ modelling

ZZ γ and ZZ($e \rightarrow \gamma$) backgrounds estimation


ZZy CR

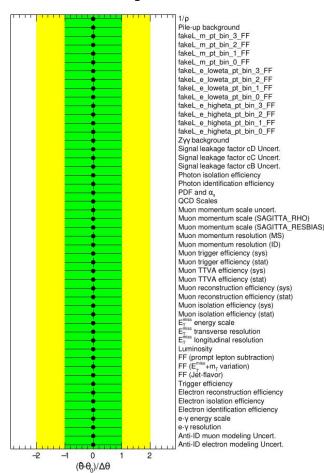
- → Requiring 4th lepton with pt >10 GeV and passing "loose" criteria
- → Removing MET cut
- → m(ll) > 40 GeV

ZZ(e->y) CR

- \rightarrow |m(e_{xy}, γ) mZ | > 10 GeV
- → MET < 20 GeV</p>

Signal extraction

• Profile likelihood fit to extract the signal strength $\mu_{ZZ\gamma}$ and μ_{ZZ} (three POIs) in three bins (SR + 2 CRs)


$$L(n, \theta^{0} | \mu_{\text{sig}}, b, \theta) = P_{SR} \times P_{CR} \times C_{\text{syst}}$$

$$= P(n_{S} | \lambda_{S}(\mu_{\text{sig}}, b, \theta)) \times \prod_{i \in CRs} P(n_{i} | \lambda_{i}(\mu_{\text{sig}}, b, \theta)) \times G(\theta^{0}, \theta)$$

• Inputs for parameterizing non-prompt background: F_l , F_{γ} , N_{χ}^{data} , N_{χ}^{prompt} (X=B, C, D)

$$N_{A}^{non-prompt} = \sum_{i} F_{i}^{\ell} \cdot (N_{B,i}^{data} - N_{B,i}^{prompt}) + \sum_{j} F_{j}^{\gamma} (N_{C,j}^{data} - N_{C,j}^{prompt}) - \sum_{i,j} F_{i}^{\ell} F_{j}^{\gamma} (N_{D,i,j}^{data} - N_{D,i,j}^{prompt})$$

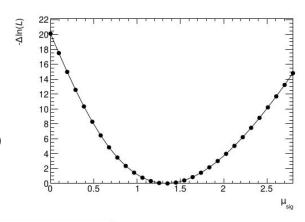
Nuisance parameters

- CP systematics
- Luminosity
- From non-prompt background estimation
 - Lepton/photon Fake factor
 - Modelling of prompt backgrounds in loose lepton/photon region
 - Statistics of data&prompt backgrounds in loose lepton/photon region
- Pile-up γ background uncertainty
- Zγγ background (30% uncertainty is assigned based on ATLAS Zγγ analysis)
- Uncert. from theoretical modelling of MC (PDF, as, QCD scales)

Break-down uncertainty on measured cross section

Sources	Relative uncertainty [%]
Photon identification and isolation efficiency	2.5
Electron identification, isolation, reconstruction efficiency	0.3
Electron–photon resolution and energy scale	0.6
Muon identification, isolation, reconstruction, momentum resolution and scale	2.4
Missing $E_{\rm T}$ resolution and energy scale	0.3
Lepton take factor	1.9
Photon fake factor	2.2
Prompt lepton modelling in loose-lepton region	2.2
Prompt photon leakage factor in loose-photon region	0.9
Pile-up γ background	0.9
Signal PDF and α_s , QCD Scales	1.1
Integrated luminosity	0.9
$Z\gamma\gamma$ cross-section	0.2
Signal MC statistics	1.2
Background MC statistics	0.4
Data statistics in loose-lepton and/or loose-photon region	5.4
Total systematic uncertainty	7.7
$ZZ\gamma$ and $ZZ(e \rightarrow \gamma)$ normalisation	2.6
Data statistics	14.8
Total statistical uncertainty	15.1

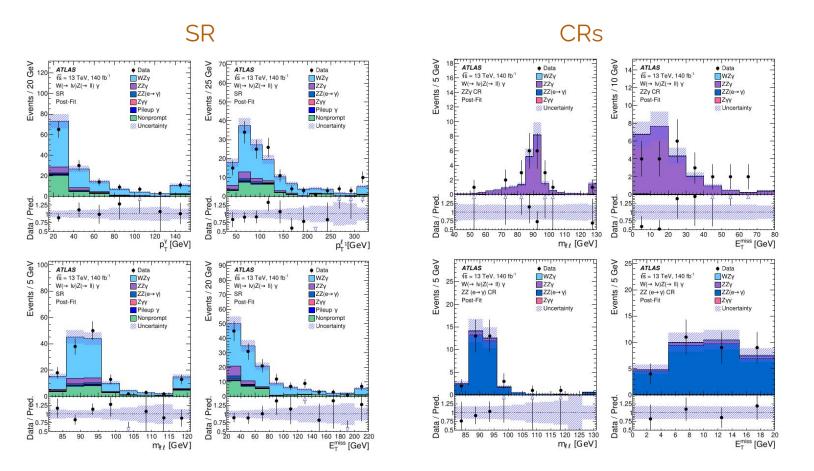
CP systematics (3.3%)


Arising from non-prompt background estimation (6.6%)

Dominated by Stat. Uncert. (15%)

Nuisance parameters

Observed (expected) significance: 6.3 (5.0)σ


- Measured cross section: $\sigma_{\text{meas}} = \sigma_{\text{pred}} \cdot \mu_{\text{sig}}$
 - μ_{sig} = 1.34 ± 0.20 (stat.) ± 0.10 (syst.) ± 0.07 (theory)
 - $\sigma_{\text{pred}}(pp \rightarrow WZ\gamma) = 1.50 \pm 0.06 \text{ fb (NLO QCD and LO EW)}$
 - o $\sigma_{\text{meas}}(pp \rightarrow WZ\gamma) = 2.01\pm0.30 \text{ (stat)}\pm0.16 \text{ (syst) fb}$

Post-fit yields

Process		SR	Z_{i}	Zγ CR	ZZ($e \rightarrow \gamma$) CR
$WZ\gamma$	92	± 15	0.21	± 0.07	0.5	6 ± 0.14
$ZZ\gamma$	10.7	\pm 2.3	23	± 5	1.8	± 0.4
$ZZ(e \rightarrow \gamma)$	3.0	\pm 0.6	0.02	28 ± 0.020	30	± 6
$Z\gamma\gamma$	1.0	5 ± 0.32	0.15	± 0.06	0.2	9 ± 0.10
Nonprompt background	30	± 6		-		-
Pileup γ	1.9	± 0.7		-		. =
Total yield	139	± 12	23	± 5	33	± 6
Data	3.	139		23		33

Post-fit distributions

Summary

- Using ATLAS Run2 data, WZγ production in pp collisions at 13 TeV is observed with 6.3σ!
- Data-driven estimation for the dominant backgrounds (non-prompt background, ZZγ, ZZ(e->γ))
- The measured fiducial cross section is 2.01±0.34 fb compared to prediction cross section of 1.50±0.07 fb (consistent within 1.5 σ)
- Accepted by PRL on Nov 8, 2023

Backup

Estimation of lepton fake factor

 Follow procedure used in ATLAS ssWW analysis

Dijet	event	selection	500
Dijet	CICII	Sciection	L

GRL

Trigger

Trigger matching

$$N_l = 1$$
 and $p_T^l > 20 \,GeV$

$$N_{\rm jet} > 0$$

$$p_{\rm T}^{\rm tagging\,jet} > 25(30) \,{\rm GeV}$$

$$|\Delta \phi(l,j)| > 2.8$$

$$E_{T,track}^{miss} + m_T < 50 \,\text{GeV}$$

ID or Anti-ID lepton

ID electron	Anti-ID electron		
	$p_{\rm T} > 20{\rm GeV}$		
$ \eta $	< 1.37 and $1.52 < \eta < 2.47$		
	$ d_0/\sigma_{d_0} < 5$		
	$ z_0 \sin \theta < 0.5 \mathrm{mm}$		
LHTight ID LHMedium ID			
Gradient isolation	A STATE OF THE STA		
	Fail LHTight ID fail Gradient isolation		

ID muon	Anti-ID muon	
	$p_{\rm T} > 20{\rm GeV}$	
	$ \eta < 2.5$	
	$ z_0 \sin \theta < 0.5 \mathrm{mm}$	
	Medium ID	
$ d_0/\sigma_{d_0} < 3$	$ d_0/\sigma_{d_0} < 10$	
PflowTight_FixedRad isolation PflowLoose_FixedRad isolation		
-	$ d_0/\sigma_{d_0} > 3$ or fail PflowTight_FixedRad isolation	

Estimation of photon fake factor

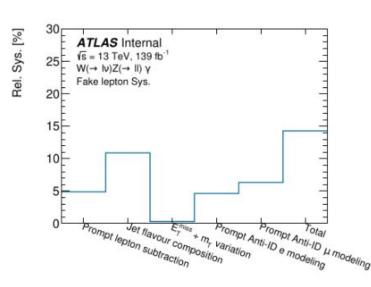
 Follow and extend procedure for fake background estimation in ATLAS Zγ analysis

Signal photon	Loose photon
	$p_T > 15$
$ \eta <$	1.37 and $1.52 < \eta < 2.37$
Tight	LoosePrime5 ID
${\bf FixedCutLoose}$	$p_T^{iso} < 0.05 \times E_T^{\gamma}$ (track isolation)
	Fail Tight $ E_T^{iso}>0.065p_T+E_{\rm gap} $

Zγ event selection

	Photons	Electrons	Muons
Kinematics:	$E_{\rm T} > 30~{\rm GeV}$	$p_{\rm T} > 30, 25 \; {\rm GeV}$	$p_{\rm T} > 30, 25 \; {\rm GeV}$
	$ \eta < 2.37$	$ \eta < 2.47$	$ \eta < 2.5$
	excl. $1.37 < \eta < 1.52$	excl. $1.37 < \eta < 1.52$	
Identification:	Tight [55]	Medium [55]	Medium [56]
Isolation:	FixedCutLoose [55]	FCLoose [55]	FCLoose_FixedRad [56]
	$\Delta R(\ell,\gamma) > 0.4$	$\Delta R(\mu, e) > 0.2$	
Event selection:	$m(\ell\ell) > 4$	$0 \text{ GeV}, m(\ell\ell) + m(\ell\ell\gamma)$	> 182 GeV

Yield of Z+jets in signal/loose region is estimated using data-driven method

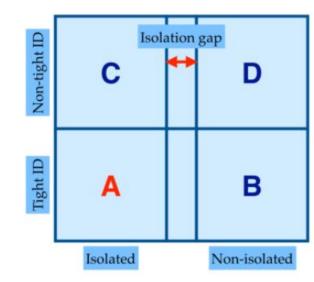

Uncertainty of non-prompt background estimation

$$N_A^{non-prompt} = \sum_i F_i^\ell \cdot (N_{B,i}^{data} - N_{B,i}^{prompt}) + \sum_j F_j^\gamma (N_{C,j}^{data} - N_{C,j}^{prompt}) - \sum_{i,j} F_i^\ell F_j^\gamma (N_{D,i,j}^{data} - N_{D,i,j}^{prompt})$$

- From F₁ determination (follow uncertainty estimation in ATLAS ssWW analysis)
 - Vary prompt lepton backgrounds being subtracted by +/-5% (prediction and data agree within 5% in W+jets CR dominated by those prompt lepton backgrounds)
 - \circ Jet flavor composition (difference between $N_{b-jets=0}$ and $N_{b-jets>=1}$)
 - Vary E^{miss}_{T, track} + m_T cut
- From F_v determination (follow uncertainty estimation in ATLAS Zy analysis)
 - Zγ signal leakage factor
 - Z+jets correlation factor R
 - Fake photon pT spectrum difference between Z+jets and WZ+jets
- From modelling of prompt backgrounds in B, C,D
- From statistics of data in B, C, D region (dominant)
- From statistics of MC in B, C, D region

Fake lepton background uncertainty

- From fake factor determination using dijet events (analogous to ssWW analysis)
 - Vary prompt lepton backgrounds being subtracted by +/-5% (prediction and data agree within 5% in W+jets CR dominated by those prompt lepton backgrounds)
 - Jet flavor composition (difference between Nb-jets = 0 and Nb-jets >= 1)
 - Vary E^{miss}_{J, track} + m_J cut (e.g. +/- 5 GeV)
- From prompt-lepton modeling in Anti-ID region
 - 20% (30%) for electron/muon (based on José Pretel's studies here)



Fake photon estimation

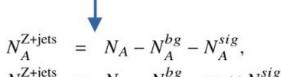
• Use extended ABCD method based on fake photon ratio (ρ -value), i.e. fake photons failing the tight but passing the loose selection to those passing tight selection:

$$\rho = \frac{N(\gamma_{\rm f}^{\rm L})}{N(\gamma_{\rm f}^{\rm T})},$$

- ρ -value derived from Z+jets events using standard ABCD method as in ATLAS Zy analysis
 - Tight region: A
 - Loose region: B+C+D

ρ value estimation

$$oldsymbol{
ho}$$
 value estimation


- Nsig is the yield of Zy signal
- N^{bg} is yield of prompt photon backgrounds including tty, WZ, WWy, ZZ, WZy, TTy, ZZy

$$R = \frac{N_A^{Z+jets} \times N_D^{Z+jets}}{N_B^{Z+jets} \times N_C^{Z+jets}}, \qquad c_B = \frac{N_B^{sig}}{N_A^{sig}}, c_C = \frac{N_C^{sig}}{N_A^{sig}}, c_D = \frac{N_D^{sig}}{N_A^{sig}}, \qquad (N_A - N_A^{bg}), (N_B - N_B^{bg}), (N_C - N_C^{bg}) \text{ and } (N_D - N_D^{bg})$$

 $N_A^{sig} = N_A - N_A^{bg} - N_A^{Z+jets} = N_A - N_A^{bg} - R \frac{[(N_B - N_B^{bg}) - c_B N_A^{sig}][(N_C - N_C^{bg}) - c_C N_A^{sig}]}{(N_D - N_D^{bg}) - c_D N_A^{sig}}.$ Solve this equation

to get NASIG

 $N_B^{Z+\text{jets}} = N_B - N_B^{bg} - c_B \times N_A^{sig},$ $N_C^{Z+\text{jets}} = N_C - N_C^{bg} - c_C \times N_A^{sig},$

Estimated value:

$$N_D^{Z+jets} = N_D - N_D^{bg} - c_D \times N_A^{sig}$$

$$\rho(Z + \gamma_f) = \frac{(N_B^{Z+jets} + N_C^{Z+jets} + N_D^{Z+jets})}{N_A^{Z+jets}}$$

 $\rho = 2.508 \pm 0.041 \text{ (stat.)} \pm 0.185 \text{ (sys.)}$

Fake photon background uncertainty

 From prompt photon backgrounds subtraction in Tight, Loose region

V	2002/06/2005	2022020	960		
Fram	1/1///	Cianal	1001/200	factor	-
 11 1 0111	$VV \angle V$	Siulial	leakage	Ideloi	(
		5			_

• From ρ-value estimation∢

- Zγ signal leakage factor
- Z+jets correlation factor R

•	Fake photon p _T spectrum difference between
	Z+jets and WZ+jets

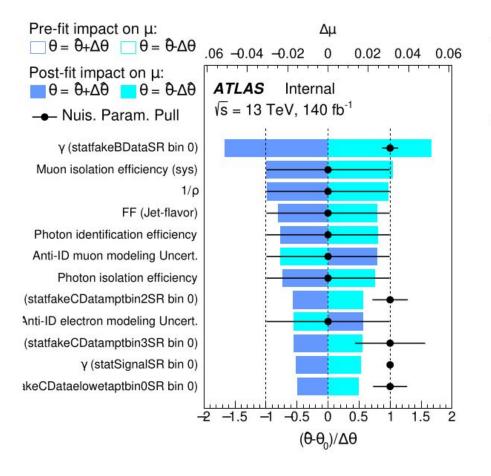
 Integral p-value re-estimated with fake photon pT in Z+jets scaled to WZ+jets

Sources	Relative Sys. (%)
N_{BG}	2.9
c_B , c_C and c_D in $WZ\gamma$ c_B , c_C and c_D in $Z\gamma$]4.5
R in $Z\gamma$	7.1
Fake photon shape difference	10.6
Total	13.8

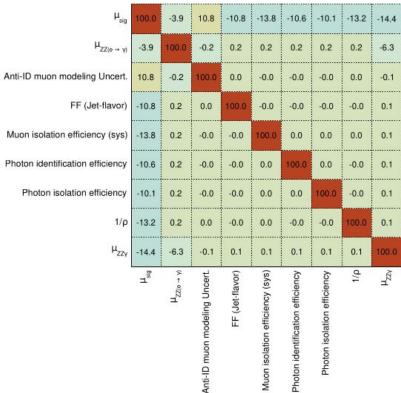
Taking advantage of relevant sys. estimation in ATLAS Zy analysis

Triggers

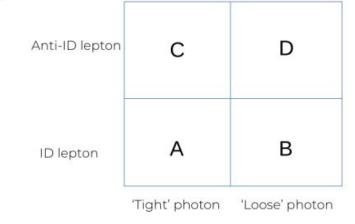
Electron triggers:


2015: e24_lhmedium_L1EM20VH, e60_lhmedium, e120_lhloose

2016-2018: e26_lhtight_nod0_ivarloose, e60_lhmedium_nod0, e140_lhloose_nod0


Muons triggers:

2015: mu20_iloose_L1MU15, mu50


2016-2018: mu26_ivarmedium, mu50

ATLAS Internal

Yields in Anti lepton/photon region

Process	ID lepton, Loose photon	Anti-ID lepton, Tight photon	Anti-ID lepton, Loose photon	$ZZ\gamma$ CR	$ZZ(e \rightarrow \gamma)$ CR
data	59	89	32	23	33
$WZ\gamma$ (no τ rejection)	8.3 ± 0.2	20.4 ± 0.4	2.6 ± 0.1	0.1 ± 0.0	0.4 ± 0.1
ZZy	1.2 ± 0.0	3.3 ± 0.1	0.5 ± 0.0	18.9 ± 0.1	1.5 ± 0.0
$ZZ(e \rightarrow \gamma)$	0.5 ± 0.1	1.4 ± 0.1	0.3 ± 0.1	0.0 ± 0.0	30.6 ± 0.6
$Z\gamma\gamma$	0.2 ± 0.1	0.8 ± 0.1	0.0 ± 0.1	0.2 ± 0.0	0.3 ± 0.0

Table 20: The yields of processes in the regions for Anti-ID lepton or/and Loose photon, and CRs for $ZZ\gamma$ and $ZZ(e \rightarrow \gamma)$.