

Search for A/H→ttbar with Interference in 1-lepton Final State (Blinded)

Yizhou Cai (NJU)

The 9th China LHC Physics Workshop, Nov 20, 2023

Motivation

- Blank at bottom-right of hMSSM exclusion limit
 - Low $\tan \beta$ and high m_A
 - $gg \rightarrow A/H \rightarrow t\bar{t}$ is expected to be sensitive there
 - Large $g_{\Phi t \bar{t}}$
 - Dominant decay channel
 - Production cross sections are substantial

Strong interference between signal and background

00000864

ъ Щ40000

20000

-20000

-40000

300

s

- S+I

400

500

• Rich $gg \rightarrow t\bar{t}$ progress in SM

- Destroy the common signal shape
- Complicated peak-dip structure
- Due to on-shell *t* in gluon-fusion
- Highly model-dependent

2023/11/19

Signal Production

- Signal process is implemented at LO via MadGraph
 - Hack MadGraph to subtract background matrix element from the total process
 - Produce S+I for A: g g > t t~ / H QCD<=99 QED<=99
 - Consistent results with quadratic production as well as an alternative hack method by CMS
 - Agreed by MG author
- Apply normalization factor to estimate the NLO case
 - $S_{NLO} + I_{NLO} = k_S \times S_{LO} + \sqrt{k_S k_B} \times I_{LO}$
 - Not possible to produce NLO interference in a cpu-time-saving way so far
- The relative widths could change a lot among different points
 - The signal shapes closely relate to heavy Higgs widths
 - Need signal samples for many parameter points of many interpretations
 - Re-use the full simulated samples via parton-level reweighting

$$W_{\text{new}} = \frac{|M_{\text{new}}|^2}{|M_{\text{old}}|^2} \times W_{\text{old}}$$

Event Selection

Common selection:

- Standard run and event cleaning
- Single-lepton trigger
- Exactly 1 lepton with $p_{\rm T} > 28 {\rm GeV}$
- $E_{\rm T}^{\rm miss} > 20 {\rm GeV}, E_{\rm T}^{\rm miss} + m_{\rm T}^W > 60 {\rm GeV}$
- \geq 1 b-tagged jet (DL1r 77% WP)

Resolved

- > Number of jets:
 - \geq 4 small-R jets
- > Well-reconstructed $t\bar{t}$:
 - $\log_{10}(\chi^2) < 0.9$
- > Orthogonality:
 - Veto events passing merged selection

Merged:

- > Top tagging:
 - ≥ 1 large-R jet with $p_{\rm T} > 300 {\rm GeV}$ and $m > 100 {\rm GeV}$
 - $\rightarrow t_h$
- Close-to-lepton jet:
 - ≥ 1 small-R jet with $\Delta R(l, jet) < 2.0$
 - $\rightarrow b_l$
- Avoid overlap between objects:
 - $\Delta R(l, t_h) > 1.5$
 - $\Delta R(b_l, t_h) > 1.5$

Analysis Strategy

Merged:

• Variable of interest: $m_{t\bar{t}} = m(t_h + b_l + l + \nu)$

Resolved:

- Variable of interest: $m_{t\bar{t}} = m(j_1 + j_2 + j_3 + j_4 + l + \nu)$
- Minimize chi2 to select the four jets for the $t\bar{t}$ system

$$\chi^{2} = \left[\frac{m_{jj} - m_{W}}{\sigma_{W}}\right]^{2} + \left[\frac{m_{jjb} - m_{jj} - m_{t_{h}-W}}{\sigma_{t_{h}-W}}\right]^{2} + \left[\frac{m_{jl\nu} - m_{t_{l}}}{\sigma_{t_{l}}}\right]^{2} + \left[\frac{(p_{T,jjb} - p_{T,jl\nu}) - (p_{T,t_{h}} - p_{T,t_{l}})}{\sigma_{dif f p_{T}}}\right]^{2}$$

- Scale energies of jets used for t_h for better $m_{t\bar{t}}$ resolution
- Categorized by b-tagging:
 - **2b region**: b-jet exists in both t_h and t_l
 - **1b region:** b-jet only appear in t_h or t_l
- Equally split to 5 SRs by angle variable $|\cos \theta^*|$
 - The angle between $t\bar{t}$ system and t_l momentum in $t\bar{t}$ rest frame
 - The signal Higgs decay into $t\bar{t}$ isotropically
 - SM $t\bar{t}$ background will show a peak at 1

5

NNLO Reweighting for SM ttbar

- Generated SM ttbar MC (Powheg + Pythia) at NLO in QCD, no higher-order EW corrections
- Higher-precision differential predictions at NNLO-QCD+NLO-EW calculated by Mitov et al
- Reweight generated MC samples to higher-order predictions
 - \succ Iterative recursive reweighting in $p_T(top, avg)$ and $m_{t\bar{t}}$
 - Using parton-level momentum after FSR
- Excellent closure after 3 iterations, significantly improves Data/MC agreement

6

Multijet Estimation

- Matrix method •
 - Alternative inclusive regions based on a loose lepton definition
 - Compare yields in loose and tight definitions
 - $N^{\text{Loose}} = N^{\text{real}} + N^{\text{fake}}$
 - $N^{\text{Tight}} = \epsilon N^{\text{real}} + f N^{\text{fake}}$
 - Real rate ϵ from MC in MM SR, fake rate f from fake-enriched CR •
 - Multijet in SR obtained by reweighting data under loose definition

$$W_{\text{multijet}}\left(N^{\text{Tight}}, N^{\text{Anti-Tight}}\right) = \frac{(\epsilon - 1)f}{\epsilon - f} N^{\text{Tight}} + \frac{\epsilon f}{\epsilon - f} N^{\text{Anti-Tight}}$$
Fake Pate in e-channel
Real Rate in e-channel

2023/11/19

Expected Exclusion

$$g_{\Phi \bar{t}t}^4 \times S + g_{\Phi \bar{t}t}^2 \times I \to \mu \times S + \sqrt{\mu} \times I$$

• Extend likelihood to include interference term

$$\mathcal{L} = \prod_{bin} \mathcal{P} \left(n | (\mu - \sqrt{\mu})S + \sqrt{\mu}(S+I) + B
ight)$$

Model-independent Interpretation

- Unable to provide a cross-section upper limit as a function of mass
- The widths and couplings depended on model parameters determine the signal shape.
- Try to make exclusions on coupling-mass plane for different relative heavy Higgs widths
 - Should help in re-interpretation of those models with additional (pseudo-)scalar Higgs
 - Lower sensitivity due to LO cross-section and no A/H combination

Summary

- Search for A/H \rightarrow ttbar interference with ATLAS detector
 - Working in progress
 - Statistically combining 1L channel and 2L channel
 - The exclusion limits will be improved afterwards
- Expected to complement the low $\tan\beta$ and high m_A region in hMSSM
- Other interpretations are also supported
- Nice to see that more and more analysis taking interference into account

Backup

Object Definitions

Muons

- \succ Leading $p_T > 28 \text{ GeV}$
- > Sub-leading $p_T > 25$ GeV
- \succ $|\eta| < 2.5$
- ➤ Medium ID
- FCTightTrackOnly isolation
- OR with jets: BoostedSlidingDRMu

Electrons

- \succ Leading $p_T > 28 \text{ GeV}$
- > Sub-leading $p_T > 25 \text{ GeV}$
- \succ |η| < 2.47, excluding cracks
- ≻ TightLHID
- TightTrackOnly isolation
- > OR with jets: electron-in-jet subtraction
 - Custom OR by Z' analysis
 - Details in Z' <u>FAR presentation</u>

- Small-R jets
 - Anti-kt 0.4, EM-PFlow
 - ▷ $p_T > 25$ GeV, |η| < 2.5
 - > JVT
- B-tagging
 - Applied on EM-PFlow jets
 - DL1r tagger, 77% WP
- Large-R jets
 - Re-clustered from AntiKT0.4 jets
 - Variable-Ralgorithm optimized for tops
 - $R = \max\{R_{\min}, \min\{R_{\max}, \rho/p_T\}\}$
 - $R_{\max} = 1.5, R_{\min} = 0.4, \rho = 600 \text{ GeV}$
 - ▷ *p_T* > 200 GeV, |η| < 2.0
 - ➢ m > 100 GeV

Uncertainties Estimation

• Experimental

Updated to the latest recommendations

- ► Luminosity 0.83% for 140 ifb
- Pile-up reweighting
- ➢ Full JES and JER systematics
- ➢ JMS and JMR for 1L Large-R jets
- Flavor tagging SF uncertainties
- Lepton SF uncertainties (reco, id, trigger, iso)
 - Extra $\pm 10\%$ on electron ID SF for $\Delta R < 0.4$ (yet to be included in 1L)

Modelling

- Signal (for both S and S+I):
 - Scale variations (μR, μF), PDF variations
 - PS generator tunes (ISR, FSR)
 - M(top) variation with alternative reweighing

SM ttbar:

- On NNLO prediction
 - Scale variations, PDF variations
- On NLO+PS prediction
 - All recommended weight uncertainty (ISR/FSR)
 - All alternative samples reweighted (ME, PS, hdamp, mtop)
- Reweighting method uncertainties
 - Reweighting order, one-emission sample
- Cross section uncertainty

Uncertainties Estimation

- Modelling
 - Single-top (Wt):
 - Scale variations, PDF variations, PS generator tunes (ISR, FSR), cross section uncertainty
 - PS (compare with PhPy8 samples), ME-PS (compare with aMC@NLO+Py8 samples)
 - Diagram removal vs subtraction scheme
 - Using up-to-date DR and DS sample with dynamic scales recommended by PMG (uncertainty much reduced)
 - ➤ W+jets (1L):
 - Scale variations, PDF variations
 - ±20% normalization uncertainty for x-section and flavour composition
 - ➤ Z+jets:
 - 2L: Uncertainty from data-driven correction
 - 1L: Cross section uncertainty
 - Individual backgrounds:
 - ±50% for multijet in 1L channel
 - ±30% for fakes in 2L channel
 - Cross section uncertainties for others

Background process	Up variation	Down variation
$\overline{t\overline{t}}$	+5.6%	-6.1%
Single-top: Wt-channel (both)	+5.4%	-5.4%
Single-top: <i>t</i> -channel (both t, \bar{t})	+4.3%	-3.7%
Single-top: <i>s</i> -channel (both t, \bar{t})	+4.4%	-4.1%
$t\bar{t} + Z$	+10.4%	-12.0%
$t\bar{t} + W$ (both W^+ , W^-)	+13.3%	-12.0%
$t\overline{t}$ +h	+6.8%	-9.8%
Z+jets (1L)	+5.0%	-5.0%