

Search for a new heavy boson W'decaying to a top quark and a bottom quark with the ATLAS detector

Rui Yuan

Shandong University, Michigan State University, Shanghai Jiao Tong University, Tsung-Dao Lee Institute CLHCP2023, 19th November

2023 CLHCP

Overview

W'

Full Run-2 data W' search

in tb final states

qqbb and lvbb channel

- Two channels are studied separately, combined at the end
 - OL: 1 top-quark (AntiKt10 jet) and 1 b-quark (AntiKt4 jet)
 - 1L: 2 b-quark (AntiKt4 jet), 1 lepton and 1 neutrino (E_T^{miss})
- Reconstruct mass of tb
- MC + Data-driven estimated background
- Profile-likelihood fit on the m_{tb} spectrum

W'

Outline

- $W' \rightarrow tb$ simulation
- Analysis strategy:
 - $W' \rightarrow tb \rightarrow qqbb$ (OL)
 - $W' \rightarrow tb \rightarrow l\nu bb$ (1L)
- Results, in terms of upper limit
 - OL, 1L and combination
 - Right-handed and Left-handed
 - 1D and 2D

Signal model and sample

W' appears in several BSM
scenarios, such as extra dimensions,
strong dynamics or composite Higgs
W' is the mediator of a new
massive charged vector current

• An effective Lagrangian is used to capture the relevant phenomenology of a W' decaying into tb

$$\mathcal{L} = \frac{V'_{ij}}{2\sqrt{2}} \bar{f}_i \gamma_\mu \left(g'^R_{i,j} (1 + \gamma^5) + g'^L_{i,j} (1 - \gamma^5) \right) W'^\mu f_j + h.c.$$

- Handeness and mass are free parameters, righthanded leptonic decay is forbidden ($m_{v_R} \gg m_{W'_R}$)
- The width is set to scale with square of g'/g: 2.6% (RH) or 3.5% (LH) $* M_{W'} * (g'/g)^2$

Phys.Rev.D86 (2012) 075018

- Signal sample: Madgraph $pp \rightarrow W' \rightarrow tb$
 - Leading order scaled to NLO (k-Factor calculated by ZTOP)
 - W'_L and W'_R (no mixture), 500 GeV 6 TeV in 1-lepton channel and 1.5 TeV – 6 TeV in 0-lepton channel
 - g'/g = 2.0 and 0.5 as starting point
 - Reweight to $g'/g = 0.1^{\circ}0.5$ (0.1 step), $1.0^{\circ}5.0$ (0.5 step)

W'_L Interference with SM s-ch single top process

0-lepton: Object

- Jet:
 - AntiKt10LCTopo large-R jet
 - DNN based top-tag: 50% WP (tight), 80% WP (loose)
 - PFlow small-R jet
 - DL1r b-tag 85% WP

O-lepton: Analysis strategy

- Select pairs of large-R jet + small-R jet
 - large-R jet: $p_T^J > 500 \text{ GeV}$
 - If top-tagged (loose) -> top-candidate
 - If not top-tagged -> top-proxy
 - small-R jet leading small-R jet with $|\Delta \Phi(j,J)| > 2.0, \ p_T^j > 500 \text{ GeV}$
 - -> b-candidate
- Categorisation: number of top-candidates
 - > 1: reject
 - = 1: keep and assign to SR/VR/TR
 - = 0: each pair of top-proxy and bcandidate -> CR
- $|\Delta \eta(t, b)| < 2$: suppress multijet background

O-lepton: Categorisation and Background estimation

- 3 SR -> Search regions, sensitive to W'
- VR -> Validate background estimation
- TR and CR -> Data-driven background estimation
- Background:
 - ttbar: MC, negligible in CR
 - QCD Multijet: Modified ABCD, data-driven

 $N_{\text{SR1,SR2}}^{\text{data-driven-background}}(i) = R_{\text{corr}}^{1}(i) \times \left(N_{\text{TR1,TR2}}^{\text{obs}}(i) - N_{\text{TR1,TR2}}^{t\bar{t}}(i)\right) \times \frac{N_{\text{CR1a}}^{\text{obs}}(i)}{N_{\text{CR2a}}^{\text{obs}}(i)}$

• Uncertainty estimated by CR a/b $\left|\frac{CR1a}{CR2a} \div \frac{CR1b}{CR2b} - 1\right|$

O-lepton: Post-fit

1-lepton: Object and Pre-selection

- Jet:
 - same small-R jet & b-tagging
 - Variable-R re-clustered jet for semi-leptonic ttbar veto

•
$$\rho = 2 * m_{top}$$
, $R_{eff}(p_T) = \rho/p_T$

- Exactly 1L with $P_T > 50 \text{ GeV}$
- $E_T^{miss} > 30 \text{ GeV}$
 - MET triggers only for $E_T^{miss} > 200 \text{ GeV}$
- Two or more jets with $P_T > 30 \text{ GeV}$
- One or more jets b-tagged

1-lepton: Reconstruction and Selection

- Neutrino reconstructed: solve the equation for four-momentum conservation between W and l + v with m_w (80.4 GeV) as constraint
- W'= top + b = Single lepton + neutrino + jet that provides the closest m_{top} + Remaining leading jet

Regions	SR	CR_{W+jets}	VR_{W+jets}	$VR_{t\bar{t}}$
	SR 2j1b, SR 2j2b,	CR 2j1b, CR 3j1b	VR 2j1b, VR 3j1b	VR 2j2b, VR 3j2b
	SR3j1b, SR3j2b			
Trigger	$E_{\rm T}^{\rm miss}$ OR one-lepton			
N _{jets}	2,3			
N_{b-jets}	1,2	1	1	2
p_T^{lepton}	> 50 GeV			
$E_{\rm T}^{\rm miss}$	> 100 GeV			
$m_{\rm T}^W$ (in 1-tag)	> 20 GeV			
$p_{\mathrm{T}}^{b_{W'}}$	> 200 GeV			
$p_{\rm T}^{\rm top}$	> 200 GeV			
m_{tb}	> 500 GeV			
$ \Delta\eta(\mathrm{top}, b_{W'}) $	< 2.0	n/a	n/a	n/a
$\Delta R(l, b_{top})$	< 1.0	> 1.5, < 2.4	> 1.0, < 1.5	> 1.0, < 2.4
<i>b</i> -tagging (2-jet regions)	$b_{W'}$ is <i>b</i> -tagged			
<i>b</i> -tagging (3-jet regions)	third jet is not <i>b</i> -tagged			
vRC-jet (3-jet regions)	veto events with 140 GeV $< m_{vRC-jet} < 200 \text{ GeV}$			

Angular variables to improve signal significance in the signal regions or dominant components' purity in the control regions

m_T^W cut reduces Multijet contribution

Strengthening Rejection of dominant backgrounds

1-lepton: Categorization and Background

- MC: ttbar/Wjets/singletop/diboson/ Zjets, ttbar/Wjets are dominant
- Multijet: data-driven template fit
 - Very small
 - m_T^W and m_{tb} distribution from loose-not-tight regions (Loosenot-tight lepton definition): multijet_template
 - Fit of m_T^W in the analysis regions using the multijet_template (only normalization, no shape)

Details

1-lepton: Post-fit

2023/11/19

Combination Limit: Right-handed

Combination Limit: Left-handed

2D Limit

- $W' \rightarrow tb$ analysis is done by using ATLAS full Run-II $139fb^{-1}$ data
 - Resonance search in the reconstructed m_{tb}
 - Monte Carlo background + data-driven Multijet background (ABCD in OL and template fit in 1L)
 - <u>arxiv:2308.08521</u>
- Comprehensive interpretation strategy
 - 0L+1L Combination results, right-handed W' mass is excluded up to 4.6 (4.2) TeV
 - Interference added to W'_L interpretation, with mass exclusion up to 4.2 (4.1) TeV
 - Exclusion contour of g'/g = 0.1 to 5.0 vs. W' mass

Backup

Signal simulation

NLO cross-section

Mass (GeV)	$\sigma_{W'_R} \times \mathcal{B}(W'_R \to t\bar{b})$ [pb]	$\sigma_{W'_L} \times \mathcal{B}(W'_L \to t\bar{b}) \text{ [pb]}$
500	$158.5 \ ^{+3.6}_{-3.4}$	$117.9^{+2.7}_{-2.5}$
1000	$13.08 \ {}^{+0.43}_{-0.42}$	$9.86\substack{+0.33 \\ -0.32}$
1500	$2.35 \ ^{+0.11}_{-0.11}$	$1.781\substack{+0.079\\-0.078}$
2000	$0.5826 \ {}^{+0.0329}_{-0.0331}$	$0.4443\substack{+0.0247\\-0.0249}$
2500	$0.1701 \ {}^{+0.0115}_{-0.0116}$	$0.1310\substack{+0.0089\\-0.0089}$
3000	$0.0547 \begin{array}{c} +0.0045 \\ -0.0046 \end{array}$	$0.0427\substack{+0.0034\\-0.0035}$
3500	$0.0188 \begin{array}{c} +0.0020 \\ -0.0020 \end{array}$	$0.0150\substack{+0.0015\\-0.0016}$
4000	$0.006890 \begin{array}{c} +0.001020 \\ -0.001023 \end{array}$	$0.00570\substack{+0.00078\\-0.00078}$
4500	$0.00276 \begin{array}{c} +0.00058 \\ -0.00058 \end{array}$	$0.00239\substack{+0.00044\\-0.00044}$
5000	$0.00125 \ {}^{+0.00034}_{-0.00034}$	$0.00113\substack{+0.00026\\-0.00026}$
5500	$0.00065 \ {}^{+0.00020}_{-0.00020}$	$0.00062\substack{+0.00015\\-0.00015}$
6000	$0.00039 \ {}^{+0.00012}_{-0.00012}$	$0.000379\substack{+0.000085\\-0.000085}$

Signal simulation: 0-lepton signal shape and efficiency

Signal simulation: 1-lepton signal shape and efficiency

2023 CLHCP

Interference formula validation

Interference formula validation for various g'/g

- 3 SR, no CR and VR included in fit
 - SR1: Tight top-tagged large-R jet with b-tagged inside ٠
 - SR2: Loose-Not-Tight top-tagged with b-tagged • inside
 - SR3: Tight top-tagged large-R jet without b-tagged • inside
 - All SR need small-R jet b-tagged ٠
- Background: ttbar (MC) and QCD Multijet (data-driven)
 - Modified ABCD method used for multijet estimation Bin-by-bin in m_{th} distribution •
 - Bin-by-bin in m_{th} distribution
 - Subtract ttbar from data
 - SR1 = TR1*(CR1a/CR2a)
 - ttbar NNLO reweighting implemented •
- Data-driven uncertainty estimated by CR a/b
 - (CR1a/CR2a)/(CR1b/CR2b)-1 •

0-lepton: Cut

O-lepton: Data-driven study

O-lepton: Data-driven study

- Multijet background uses datadriven estimation: template fit
- *m^W_T* and *m_{tb}* distribution from loose-not-tight regions (Loosenot-tight lepton definition): multijet_template
- Fit of m_T^W in the analysis regions using the multijet_template (only normalization, no shape)

Fit strategy and systematic uncertainties

- Simultaneous fit on the m_{tb} distribution, scan g'/g 0.1 ~ 5.0
 - Profile likelihood fit
- 9 regions go into the fit: 0-lepton 3 SR & 1-lepton 4 SR + 2 CR
- Right-handed and Left-handed
 - LH: <u>interference contribution</u> is taken into account in the likelihood
- Wjets/ttbar freely float in 1L regions
- All experimental systematics are considered correlated between both channels
 - luminosity, pile-up reweighting, jet, jet flavor tagging, lepton ID, MET reconstruction
- All modelling systematics are de-correlated between two channels
 - Theoretical modelling uncertainties
 - ttbar (OL/1L), Wjets (1L), singletop(1L)
 - data-driven uncertainty
 - OL: uncertainties on ttbar are propagated through the Data MC_ttbar in TR
 - OL: additional uncertainty of ABCD <- correlation between top-tag score and b-tag
 - 1L: small, given by the template fit along with the initial SF

W'_L fit with interference

1-lepton: Post-fit

- 1L 139 fb^{-1} :
 - 4.07 TeV exclusion for W'_R
 - 3.70 TeV exclusion for W'_L
- Combination 139 fb^{-1} :
 - 4.6 TeV exclusion for W'_R
 - 4.2 TeV exclusion for W'_L

- D0 and CDF: search under 1 TeV
- CMS 0L: full run-II, excluded up to 3.4 TeV
- CMS 1L: $35.9 f b^{-1}$, excluded up to 3.6 TeV
- ATLAS 1L+0L: 36.1 fb^{-1} , 3.25 TeV exclusion for W'_R
- ATLAS OL: 36.1 fb^{-1} 2.85 TeV exclusion for W'_L