

Search for $t\bar{t}H/A \to t\bar{t}t\bar{t}$ production in the final state with one or two opposite-sign leptons using the full Run 2 pp collisions data at $\sqrt{s}=13TeV$

Lining Mao

Shanghai Jiao Tong University

November 18th, 2023

Motivation

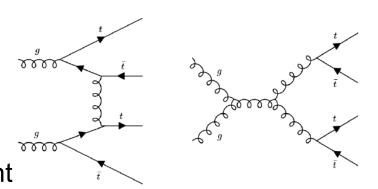
Theoretical

- Problems with the Standard Model (SM):
 - Naturalness problem, hierarchy problem, neutrinos masses...
- Two-Higgs-Doublets-Models (2HDM) as a typical BSM scenario:
 - Simplest model to extend the number of Higgs boson

$$\mathcal{L}_{2\text{HDM}}^{\text{scalar}} = \sum_{i=1,2} \left(D_{\mu} \Phi_{i} \right)^{\dagger} \left(D^{\mu} \Phi_{i} \right) - V(\Phi_{1}, \Phi_{2})$$

Experimental

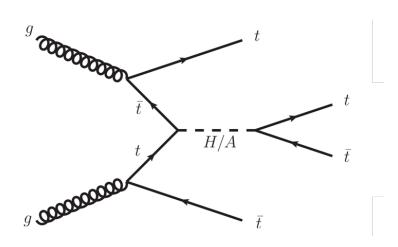
- Standard model 4-tops process
 - SM cross section expectation: $\sigma_{t\bar{t}t\bar{t}} = 13.37^{+1.04}_{-1.78}fb$
 - Latest measurement in ATLAS: $\sigma_{t\bar{t}t\bar{t}} = 22.5^{+6.6}_{-5.5}fb$
 - Inconsistence arises between the theory and the experiment

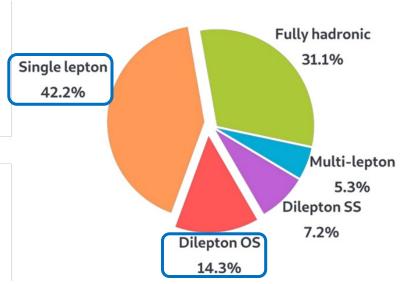


Introduction

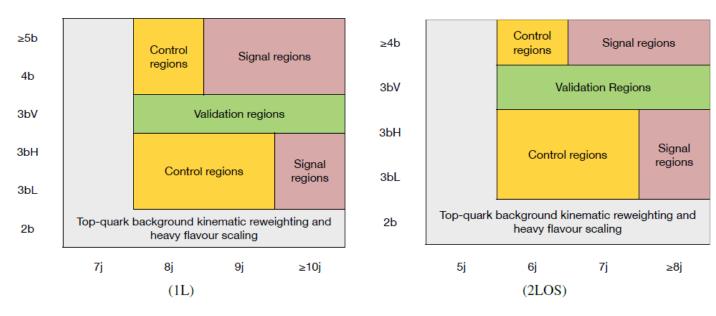
- Aim: Search for Heavy Higgs by 4tops production with the one-lepton/di-lepton opposite-sign final states
 - Higgs mass: 400GeV to 1000GeV with 100GeV granularity
 - Main background: $t\bar{t} + jets$
 - Final state signature: High jet & b-jet multiplicity

 Published for the same search in the di-lepton same-sign/multi-lepton channel (SSML channel) (link)





Analysis Strategy



Name	$N_{b}^{60\%}$	$N_{b}^{70\%}$	$N_b^{85\%}$
2b	-	= 2	-
3bL	≤ 2	= 3	-
3bH	= 3	= 3	> 3
3bV	= 3	= 3	= 3
≥4b (2LOS)	-	≥ 4	-
4b (1L)	-	= 4	-
≥5b (1L)	-	≥ 5	-

- Two types of data-driven correction factors:
 - Heavy flavor (HF) normalization factors
 - Neural network (NN)-based kinematic reweighting
- Trained H/A-mass-parameterized GNN to separate signals from background
- Profile likelihood fit in all CRs and SRs simultaneously, using H_T in CR and GNN-score in SR

Data & MC Samples and Event Selection

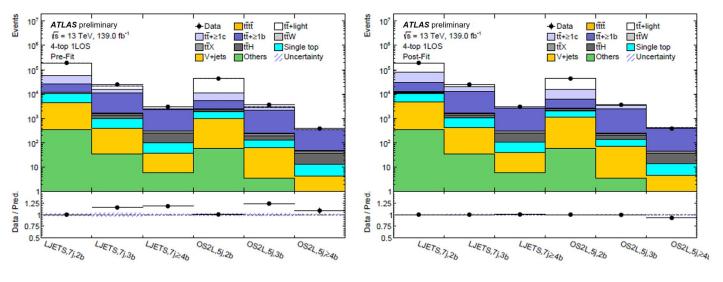
- Data: Full Run2 (2015-2018) ~ 139fb⁻¹, using single lepton triggers
- MC samples:
 - $t\bar{t}$ + jets, SM4t, ttW, ttZ, Single top, V + jets, ttt, Other top, VV, Signal
- Object definition & event selection:

Object	Baseline selection
Lepton	$p_{T} > 28 GeV, \ \eta < 1.37 or 1.52 - 2.47 (e), \ \eta < 2.5 (\mu)$ Identification: TightLH(e)/Medium(μ), Isolation: FCTight(e)/FCTightTrackOnly(μ) Impact parameter: $z_0 < 0.5 mm, \ \sigma_{d0} < 5(3)$ for e(μ)
Jet	p_T >25GeV, $ \eta $ <2.5, JVT>0.5 for p_T < 60 GeV, $ \eta $ <2.4 Algorithm: Anti- k_T
b-jet	p_T >25GeV, $ η $ <2.5, JVT>0.5 for p_T < 60 GeV, $ η $ <2.4 Algorithm: DL1r
Event	Exactly one lepton (1L) / two opposite-charge leptons (2L) with ≥ 2 jets with b-tagging passing 70% OP

Background Modelling (HF normalization)

- To correct the under-estimation of the $t\bar{t}$ + HF production rate in MC prediction
- $t\bar{t}$ + HF includes:
 - $t\bar{t} + \ge 1b$ (TTB): $t\bar{t} + at$ least one jet matched with b-hadron(s)
 - $t\bar{t} + \ge 1c$ (TTC): $t\bar{t} + at$ least one jet matched with c-hadron(s)
 - $t\bar{t}$ + light (TTL): $t\bar{t}$ + jets do not match with b or c-hadrons
- Data-driven fit to sum of pseudo-continuous b-tagging scores of 3rd and 4th jets
- Regions:7j(5j) = 2b ,=3b, ≥4b for 1L(2LOS) channel
- Scale factor $\frac{t\bar{t}_{postfit}^{nominal}}{t\bar{t}_{prefit}^{nominal}}$ & $\frac{t\bar{t}_{postfit}^{nominal}}{t\bar{t}_{prefit}^{alternative}}$:

	TTL (1L)		TTC	TTB
Nominal	0.84 ± 0.04	0.87 ± 0.03	1.61 ± 0.13	1.18 ± 0.03
ttbb 4FS	0.83 ± 0.04	0.87 ± 0.04	1.60 ± 0.10	1.17 ± 0.02
aMcAtNloPy8	0.94 ± 0.04	0.96 ± 0.04	1.78 ± 0.11	1.27 ± 0.01
PhHerwig	0.66 ± 0.03	0.73 ± 0.03	2.21 ± 0.14	1.56 ± 0.02



Pre-fit & post-fit yields for HF normalization

Background Modelling (NN-reweighting)

- Kinematic reweighting based on Neural Network (NN)
 - NN output: a-posterior Bayesian probability

$$o(x) \simeq P(data|x) = \frac{\alpha_{data} P_{data}(x)}{\alpha_{data} P_{data}(x) + \alpha_{MC} P_{MC}(x)}$$

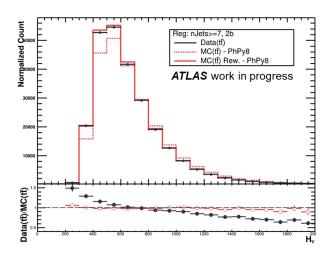
- Input list: Njets, NRCjets, each jets & lep pT, missing ET
- Training regions: ≥7j(5j), = 2b for 1L(2LOS)
- Using an exponential lose function:

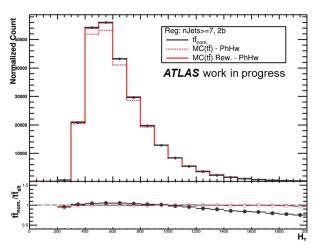
$$\mathcal{L} = P_{data}e^{-o(x)/2} + P_{MC}e^{o(x)/2}\frac{d\mathcal{L}}{do(x)}$$

$$\mathcal{L} = 0 \Rightarrow -\frac{P_{data}}{2}e^{-\frac{o(x)}{2}} + \frac{P_{MC}}{2}e^{\frac{o(x)}{2}} = 0$$

Reweighting factor can be derived as:

$$w(x) = \frac{P_{data}}{P_{MC}} = e^{o(x)}$$

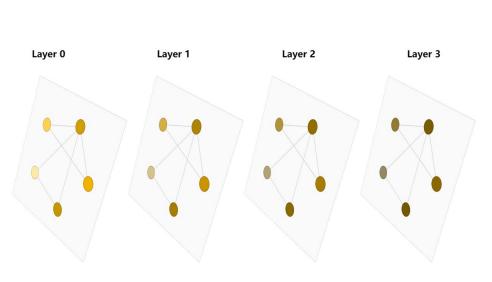




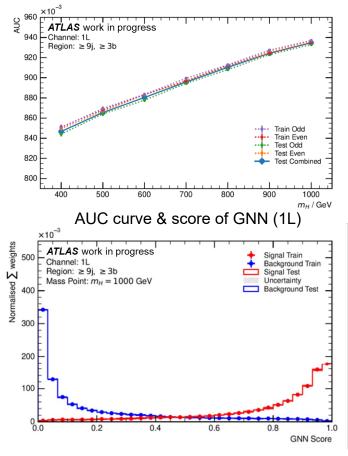
NN-reweighting effect of nominal sample (up) & alternative sample (down)

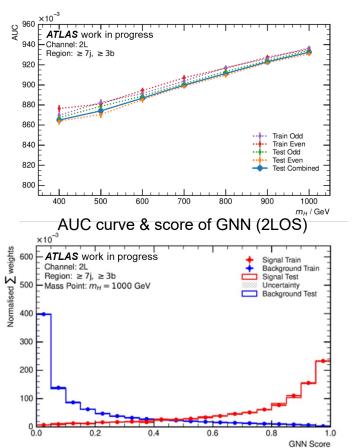
Signal Background Discrimination (GNN)

- For signal discrimination, GNN (graph neural network) has been used
 - GNN is agnostic to the number of nodes and are permutation invariant.
 - A relatively simple model can be used on events of varying multiplicity/topologies
 - Well suitable in our case with complex jet & b-jet multiplicity and structure



Simple sketch of node information accumulation through the network





Systematics

• $t\bar{t}$ theoretical uncertainties:

- $t\bar{t}$ modelling: $\mu F/\mu R/ISR/FSR$ (decorrelated to $t\bar{t}$ + \geq 1b, $t\bar{t}$ + \geq 1c and $t\bar{t}$ + light based on $t\bar{t}$ event classification)
- $t\bar{t}$ MC choice (decorrelated to $t\bar{t}$ + b, $t\bar{t}$ + bb, $t\bar{t}$ + bbb, $t\bar{t}$ + B, $t\bar{t}$ + \geq 1c and $t\bar{t}$ + light based on $t\bar{t}$ event classification)
 - ME: (PhPy8 as nominal v.s Mg5Py8 as alternative)
 - PS: (PhPy8 as nominal v.s PhHw as alternative)
 - FS: (ttbb 5FS as nominal v.s ttbb 4FS as alternative)
- $t\bar{t} + \ge 1$ b and $t\bar{t} + \ge 1$ c XS (50%), $t\bar{t} + 1$ light XS (5%, decorrelated to 1L & 2LOS channels)
- NN-reweighting
 - Statistic uncertainties extrapolation
 - Non- $t\bar{t}$ subtraction

• Non- $t\bar{t}$ theoretical uncertainties:

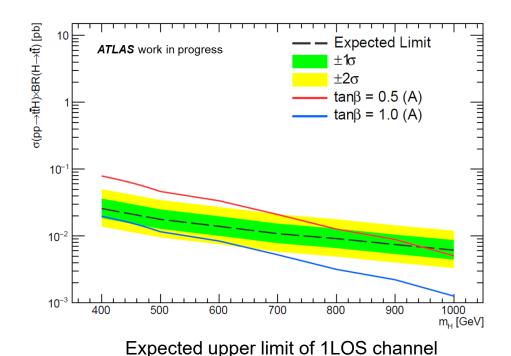
- Modelling & cross section
- SM tītī:
 - Generator, PS, scale, XS (+7.8%, -13.3%)

Experimental uncertainties:

- Luminosity, pileup reweighting, object reconstruction, jet tagging, etc.
- Signal modelling:
 - PDF (1%)
 - Renormalization and factorization scales

Expected Fit Results

- Expected upper limit of the cross section extracted from Asimov data fit
 - Ranged between 25.7 fb to 6.1 fb for heavy Higgs mass between 400 GeV and 1000 GeV, respectively
- Combination with SSML channel
 - Ranged between 9.7 fb to 4.6 fb for heavy Higgs mass between 400 GeV and 1000 GeV, respectively



σ(pp→ttH)×BR(H→tt) [pb] ATLAS work in progress $\pm 1\sigma$ (Combined) $\pm 2\sigma$ (Combined) Expected limit (1LOS) $\pm 1\sigma$ (1LOS) $\pm 2\sigma$ (1LOS) Expected limit (SSML) $\pm 1\sigma$ (SSML) $\pm 2\sigma$ (SSML) $tan\beta = 0.5 (A)$ 10 $tan\beta = 1.0 (A)$ 10^{-2} 1000 m_H [GeV]

Expected upper limit of 1LOS + SSML channel

Summary

- Heavy Higgs production in the 4-top process has been searched using ATLAS full run-2 data
- Background correction with 2 data-driven factors
 - HF normalization
 - NN-reweighting
- Signal-background discriminated by GNN
- Systematics has been robustly studied

• Expected upper limit of the cross section:

	400 GeV	1000 GeV
1LOS	25.7fb	6.1fb
Combined	9.7fb	4.6fb

Under collaboration review

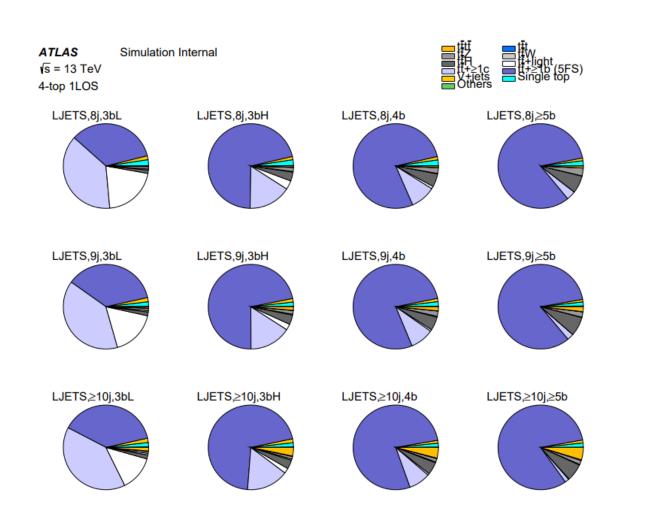
BACKUP

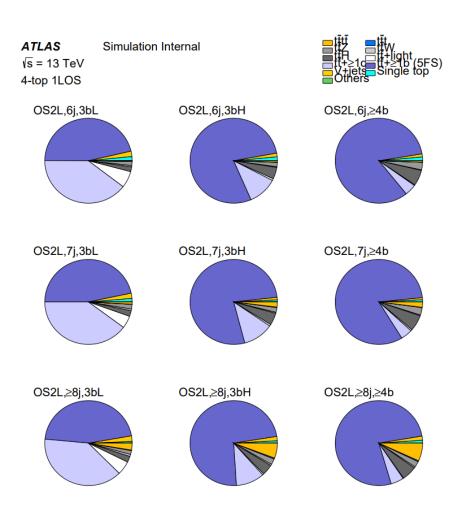
Samples

- Recent p-tag from the TOPQ1 has been used for over all MC/Data samples.
- AnalysisBase 21.2.169.
- Framework: TTHbb analysis (Link).
- Only prompt SM processes modelled with MC for background:

	Nominal	Alternative
tī + jets	PhPy8 (5FS ttbb, inclusive + HF filtered +HT sliced)	Mg5Py8, PhHw, PhPy8 (4FS ttbb)
SM4t	aMcAtNloPy8	aMcAtNloHerwig7, Sherpa
ttVV	Sherpa	aMcAtNloPy8
ttZ	aMcAtNloPy8	Sherpa
Single top	PhPy8	PhH7, aMcAtNloPy8
V + jets	Sherpa	-
ttt	Mg5Py8	-
Other top, VV	MgPy8, aMcAtNloPy9	-
Signal	Mg5Py8	-

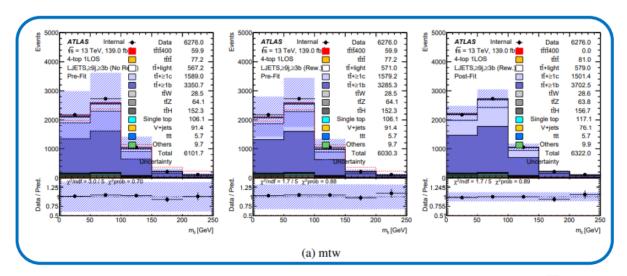
Background Composition

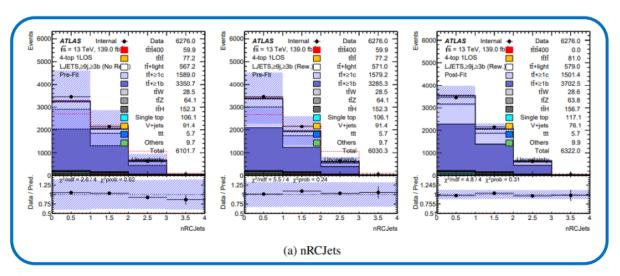




Performance of NN-reweighting

- Added several Data/MC comparison plots for the variables used in the MVA training (Appendix K.2)
 - Pre-fit plots without reweighting (left), pre-fit plots with reweighting (middle), post-fit plots (right)



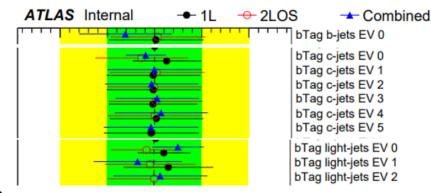


Example plots

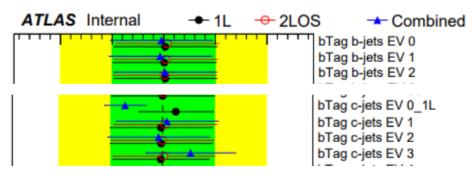
Shows good modelling after NN-reweighting and fitting

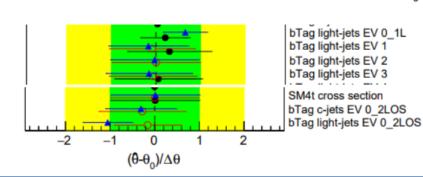
Heavy Flavor Correction Factor

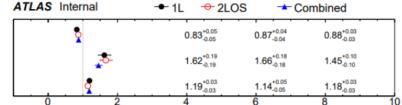
- Regions: 7j (5j) for 1L (2LOS) with 2b, 3b, ≥4b
- Combined Fit with Nuisance Parameters Correlated among Channels
 - Unstable pulls is come from the performance differences among the two channels.
 - major differences can be found in NP bTag c-jets EV0 (C0) and bTag light-jets EV0 (L0)



- Combined Fit with C0 and L0 Decorrelated among Channels
 - · Do not entirely resolve the issue







Heavy Flavor Correction Factor

Combined Fit with Different Correction Factors Decorrelation among Channels:

✓ Decorrelated TTL:

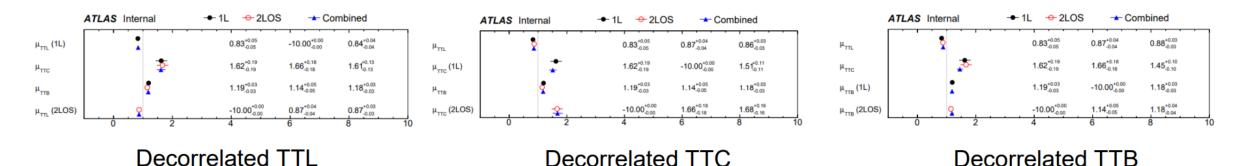
 The correction factors derived from the combined fit are closed to and in between the results derived from 1L and 2LOS separated fits.

Decorrelated TTC:

- C0 pulls in the combined fit are opposite to the separated fits
- μ TTC (1L) derived in the combined fit is deviated from the result derived in the 1L separate fit

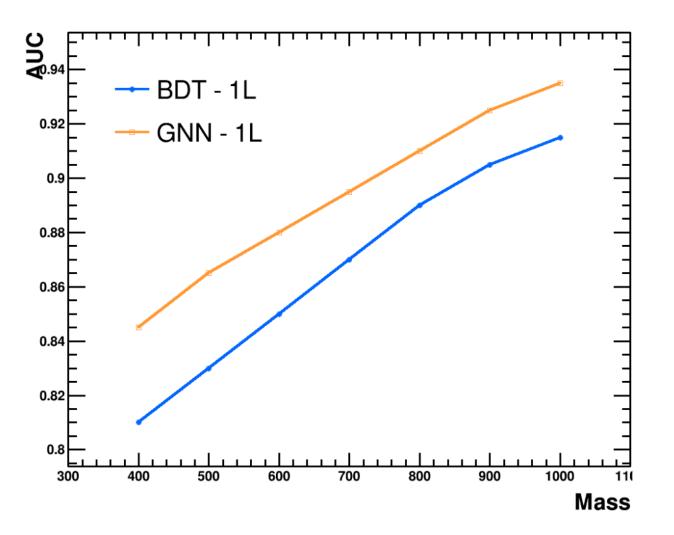
Decorrelated TTB:

 The NP pulls and the HF correction factors are nearly the same as the case of without decorrelating the correction factors.



GNN VS BDT

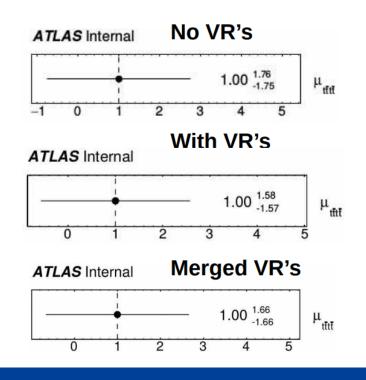
- SM4top like BDT has been also studies with the same input list used as global feature in GNN
- Purposed as a benchmark, and used only for control
- GNN shows significant improvement comparing to BDT
- GNN and BDT shows same level agreement over the data/MC in SR
- Observed same level of pulls/constrains in fits using BDT or GNN
- GNN found to be more sensitive

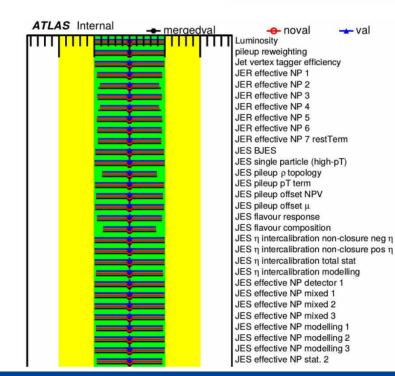


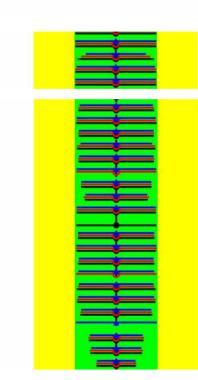
Validation Regions

- Validation region defined in SM 4-top is studied 3bV(SM 4-top)
 - In our analysis this region found to be more sensitive than 3bH
 - → Simply this two region definition swapped in our analysis
 - 3bV (SM 4-top) = 3bH & 3bH(SM 4-top) = 3bV

Name	$N_b^{60\%}$	$N_b^{70\%}$	$N_b^{85\%}$
2b	-	= 2	=
3bL	≤ 2	= 3	-
3bH	= 3	= 3	= 3
3bV	= 3	= 3	≥ 4
≥4b (2LOS)	-	≥ 4	-
4b (1L)	-	= 4	-
≥5b (1L)	-	≥ 5	-







bTag c-jets EV 17 bTag light-jets EV 0 bTag light-jets EV 1 bTag light-jets EV 2

tt+≥ 1c gen. choice Acc. tt+≥ 1c gen. choice Shape ttb gen, choice Acc. ttb gen. choice Shape ttB gen, choice Acc. ttB gen. choice Shape ttbb gen. choice Acc. ttbb gen, choice Shape tt+≥3b gen. choice Acc. tt+≥3b gen. choice Shape tt+light PS choice Acc. tt+light PS choice Shape tt+≥ 1c PS choice Acc. tt+≥ 1c PS choice Shape ttb PS choice Acc. ttb PS choice Shape ttB PS choice Acc. ttB PS choice Shape ttbb PS choice Acc. ttbb PS choice Shape tt+≥3b PS choice Acc.

NN-reweighting (loss function)

Exponential Loss

$$\mathcal{L} = p_A e^{-r'/2} + p_B e^{r'/2}$$

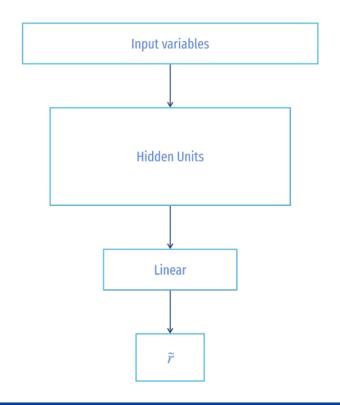
$$\frac{\partial \mathcal{L}}{\partial r'} = -\frac{p_A}{2}e^{-r'/2} + \frac{p_B}{2}e^{r'/2} = 0 \rightarrow \left[e^{r'} = \frac{p_A}{p_B} = r\right]$$

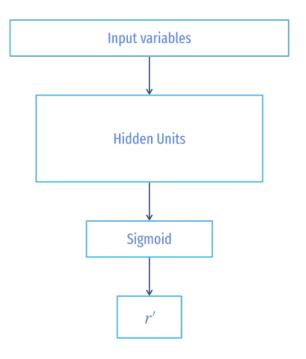
Binary Cross Entropy

$$\mathcal{L} = -p_A \log r' - p_B \log(1 - r')$$

$$\frac{\partial \mathcal{L}}{\partial r'} = -\frac{p_A}{2}e^{-r'/2} + \frac{p_B}{2}e^{r'/2} = 0 \rightarrow e^{r'} = \frac{p_A}{p_B} = r$$

$$\frac{\partial \mathcal{L}}{\partial r'} = -\frac{p_A}{r'} + \frac{p_B}{1 - r'} = 0 \rightarrow r' = \frac{p_A}{p_A + p_B} \rightarrow r = \frac{r'}{1 - r'}$$

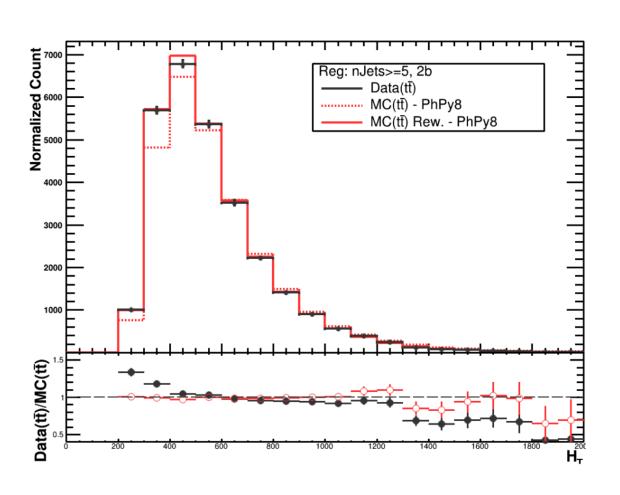


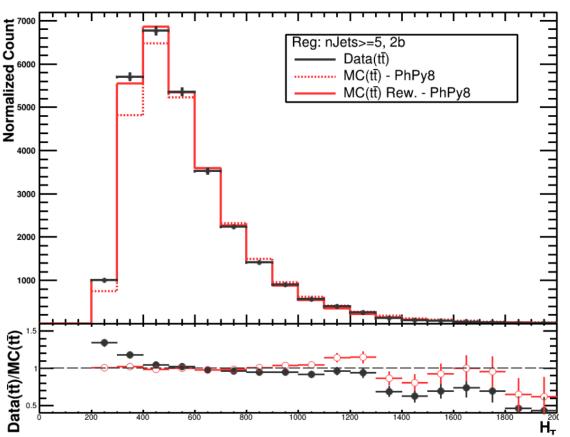


NN-reweighting (loss function)

Exponential Loss

Binary Cross Entropy





Expected significance

