CEPC EW physics: towards White Paper

Jiayin Gu (顾嘉荫)

Fudan University

CLHCP2023 Nov 18, 2023

mainly based on an earlier draft of the EW white paper and the CEPC Snowmass report [2205.08553]

Jiayin Gu (顾嘉荫)

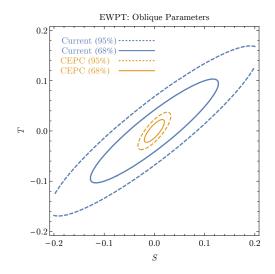
The current status of the CEPC EW white paper

An earlier draft (last updated in 2019) with outdated run scenarios

- Z-pole measurements
- W mass measurements (threshold and kinematic reconstruction)
- Oblique parameter fit
- SMEFT fit
- New physics implications (Natural SUSY)
- The CEPC Snowmass report [2205.08553]
 - Updated measurement inputs
 - Updated SMEFT fit
 - New physics implications (see the previous talk by Jia)

• Z pole: $\sim 8 \, \mathrm{ab}^{-1}$? $\rightarrow 100 \, \mathrm{ab}^{-1}$

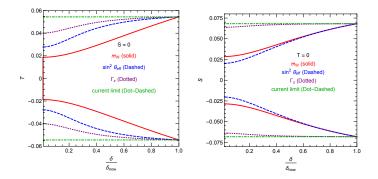
- Many measurements are dominated by systematics, but A_θ and A_τ from final state tau polarization measurements are significantly improved. (They were already considered in the earlier draft but were not official...)
- WW threshold: $3.2 \,\mathrm{ab^{-1}} \rightarrow 6 \,\mathrm{ab^{-1}}$
 - W mass: 1 MeV → 0.5 MeV (We also got more optimistic?)
- ▶ 240 GeV: $5.6 \, \mathrm{ab^{-1}} \rightarrow 20 \, \mathrm{ab^{-1}}$
 - Higgs and diboson ($e^+e^- \rightarrow WW$) measurements
- Top threshold run: no \rightarrow yes
 - The top mass measurement is an important input for EW fits!


The measurement inputs CEPC Snowmass report [2205.08553]

Observable	current precision	CEPC precision (Stat. Unc.)	CEPC runs	main systematic
Δm_Z	2.1 MeV [37–41]	$0.1 { m MeV} (0.005 { m MeV})$	${\cal Z}$ threshold	E_{beam}
$\Delta\Gamma_Z$	2.3 MeV [37–41]	$0.025~{\rm MeV}~(0.005~{\rm MeV})$	${\cal Z}$ threshold	E_{beam}
Δm_W	9 MeV [42–46]	$0.5 { m MeV} (0.35 { m MeV})$	$WW\ {\rm threshold}$	E_{beam}
$\Delta\Gamma_W$	49 MeV [46–49]	$2.0 { m MeV} (1.8 { m MeV})$	$WW\ {\rm threshold}$	E_{beam}
Δm_t	$0.76 {\rm ~GeV} [50]$	O(10) MeV ^a	$t\bar{t}$ threshold	
ΔA_e	$4.9\times 10^{-3} \ \ [\textbf{37, 51-55}]$	$1.5\times 10^{-5}~(1.5\times 10^{-5})$	Z pole $(Z \to \tau \tau)$	Stat. Unc.
ΔA_{μ}	0.015 [37 , 53]	$3.5\times 10^{-5}~(3.0\times 10^{-5})$	Z pole $(Z \to \mu \mu)$	point-to-point Unc.
ΔA_{τ}	$4.3\times 10^{-3} \ \ [\textbf{37, 51-55}]$	$7.0\times 10^{-5}~(1.2\times 10^{-5})$	Z pole $(Z \to \tau \tau)$	tau decay model
ΔA_b	0.02 [37, 56]	$20\times 10^{-5}~(3\times 10^{-5})$	${\cal Z}$ pole	QCD effects
ΔA_c	$0.027 \ [37, 56]$	$30\times 10^{-5}~(6\times 10^{-5})$	Z pole	QCD effects
$\Delta \sigma_{had}$	37 pb [37–41]	2 pb (0.05 pb)	${\cal Z}$ pole	lumiosity
δR_b^0	0.003 [37, 57–61]	$0.0002~(5\times 10^{-6})$	${\cal Z}$ pole	gluon splitting
δR_c^0	$0.017 \ [37, 57, 6265]$	$0.001~(2\times 10^{-5})$	Z pole	gluon splitting
δR_e^0	$0.0012 \ [37-41]$	$2\times 10^{-4}~(3\times 10^{-6})$	${\cal Z}$ pole	E_{beam} and t channel
δR^0_μ	0.002 [37-41]	$1\times 10^{-4}~(3\times 10^{-6})$	${\cal Z}$ pole	E_{beam}
$\delta R_{ au}^0$	0.017 [37-41]	$1\times 10^{-4}~(3\times 10^{-6})$	${\cal Z}$ pole	E_{beam}
δN_{ν}	0.0025 [37 , 66]	$2\times 10^{-4}~(3\times 10^{-5}$)	ZH run $(\nu\nu\gamma)$	Calo energy scale

Jiayin Gu (顾嘉荫)

- Δ : absolute uncertainties, δ : relative uncertainties
- ► The constraints on A_e and A_τ mainly come from $e^+e^- \rightarrow \tau^+\tau^-$ with final state tau polarization measurements.
- A_{μ} , A_{b} and A_{c} are derived from the A^{FB} measurements and A_{e} .
 - Best way to present the results?


S & T parameters (earlier draft)

Jiayin Gu (顾嘉荫

Fudan University

S & T parameters (earlier draft)

▶ What's the impact of the *m*^t measurement?

Jiayin Gu (顾嘉荫)

CEPC EW physics: towards White Paper

Fudan University

	X^{2}		φ^4 and $\varphi^4 D^2$		$\psi^2 \varphi^3$		$(\hat{L}L)(\hat{L}L)$		$(\bar{R}R)(\bar{R}R)$		(LL)(RR)
Q_G $Q_{\tilde{G}}$ Q_W Q_{W} Q_{W}	$\begin{array}{l} f^{ABC}G^{Ab}_{\mu}G^{Bb}_{\nu}G^{Ca}_{\nu}\\ f^{ABC}\widetilde{G}^{Ab}_{\mu}G^{Bb}_{\nu}G^{Ca}_{\nu}\\ s^{IJK}W^{Ja}_{\mu}W^{Ja}_{\nu}W^{Ja}_{\mu}W^{Ka}_{\mu}\\ s^{IJK}\widetilde{W}^{Ja}_{\mu}W^{Ja}_{\nu}W^{Ka}_{\mu} \end{array}$	$\begin{array}{c} Q_{\mu} \\ Q_{\mu D} \\ Q_{\mu D} \end{array}$	$(\varphi^{\dagger}\varphi)^{3}$ $(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$ $(\varphi^{\dagger}D^{s}\varphi)^{*}(\varphi^{\dagger}D_{p}\varphi)$	Q _{rr} Q _{uu} Q _{sb}	$(\varphi^{\dagger}\varphi)(\bar{l}_{\rho}e_{\nu}\varphi)$ $(\varphi^{\dagger}\varphi)(\bar{q}_{\rho}d_{\nu}\bar{\varphi})$ $(\varphi^{\dagger}\varphi)(\bar{q}_{\rho}d_{\nu}\varphi)$	$\begin{array}{c} Q_{2} & 0 \\ Q_{2}^{(1)} & 0 \\ Q_{2}^{(2)} & 0 \\ Q_{2}^{(2)} & 0 \\ Q_{2}^{(1)} & 0 \\ Q_{2}^{(1)} & 0 \end{array}$	$ \begin{array}{c} (\bar{l}_{\ell}\gamma_{0}l_{\tau})(\bar{l}_{\ell}\gamma^{\mu}l_{\ell}) \\ (\bar{q}_{\ell}\gamma_{0}q_{\tau})(\bar{q}_{\ell}\gamma^{\mu}q_{\ell}) \\ (\bar{q}_{\ell}\gamma_{0}\tau^{\mu}q_{\tau})(\bar{q}_{\ell}\gamma^{\mu}\tau^{\mu}q_{\ell}) \\ (\bar{d}_{\ell}\gamma_{0}l_{\tau})(\bar{q}_{\ell}\gamma^{\mu}q_{\ell}) \\ (\bar{l}_{\ell}\gamma_{0}l_{\tau})(\bar{q}_{\ell}\gamma^{\mu}q_{\ell}) \end{array} $	Q_{cc} Q_{ca} Q_{ca} Q_{ca}	$(\hat{e}_p \gamma_p e_r)(\hat{e}_s \gamma^s e_t)$ $(\hat{e}_p \gamma_s v_r)(\hat{e}_s \gamma^s e_t)$ $(\hat{d}_p \gamma_s d_r)(\hat{d}_s \gamma^s d_t)$ $(\hat{e}_p \gamma_p d_r)(\hat{d}_s \gamma^s v_t)$		$\begin{array}{c} (\tilde{l}_{p}\gamma_{\mu}l_{\tau})(\tilde{e}_{\tau}\gamma^{\mu}e_{t}) \\ (\tilde{\ell}_{p}\gamma_{\mu}l_{\tau})(\tilde{e}_{\tau}\gamma^{\mu}a_{t}) \\ (\tilde{\ell}_{p}\gamma_{\mu}l_{\tau})(\tilde{e}_{\tau}\gamma^{\mu}a_{t}) \\ (\tilde{\ell}_{p}\gamma_{\mu}l_{\tau})(\tilde{e}_{\tau}\gamma^{\mu}e_{t}) \end{array}$
$Q_{\mu\sigma}$ $Q_{\mu\bar{\sigma}}$	$X^2 \varphi^2$ $\varphi^2 \varphi G^{h}_{\mu\nu} G^{h\mu\nu}$ $\varphi^2 \varphi \widetilde{G}^{h}_{\mu\nu} G^{h\mu\nu}$	Q _{el} w Q _{ell}	$\psi^2 X \varphi$ $(\bar{l}_p \sigma^{au} e_r) \tau^I \varphi W^I_{\mu\nu}$ $(\bar{l}_p \sigma^{au} e_r) \varphi B_{\mu\nu}$	$\begin{array}{c} Q^{(1)}_{arphi} \\ Q^{(2)}_{arphi} \end{array}$	$\psi^2 \varphi^2 D$ $\langle \varphi^{i i} \vec{D}_{\mu} \varphi \rangle (\vec{l}_{\mu} \gamma^{\mu} l_{\tau})$ $\langle \varphi^{i i} \vec{D}_{\mu} \varphi \rangle (\vec{l}_{\mu} \tau^{\ell} \gamma^{\mu} l_{\tau})$ \downarrow	$Q_{iq}^{(0)}$	$(\bar{l}_p \gamma_p \tau^I l_r)(\bar{q}_t \gamma^\mu \tau^I q_t)$	$\begin{array}{c} Q_{cd} \\ Q_{cd} \\ Q_{cd} \\ Q_{cd} \\ Q_{cd} \\ Q_{cd} \\ Q_{cd} \end{array}$	$\begin{array}{c} (\bar{e}_{y}\gamma_{y}e_{r})(\bar{d}_{t}\gamma^{s}d_{t}) \\ (\bar{e}_{y}\gamma_{y}u_{r})(\bar{d}_{t}\gamma^{s}d_{t}) \\ (\bar{a}_{y}\gamma_{s}T^{t}u_{r})(\bar{d}_{t}\gamma^{s}T^{t}d_{t}) \end{array}$	$ \begin{smallmatrix} 0 \\ Q \\$	$\begin{array}{c} (\bar{q}_i \gamma_1 q_r) (\bar{u}_i \gamma^\mu u_i) \\ (\bar{q}_i \gamma_\mu T^A q_r) (\bar{u}_i \gamma^\mu T^A u_i) \\ (\bar{q}_i \gamma_i q_r) (\bar{d}_i \gamma^\mu d_i) \\ (\bar{q}_i \gamma_\mu T^A q_r) (\bar{d}_i \gamma^\mu T^A d_i) \end{array}$
$\begin{array}{c} Q_{qW} \\ Q_{qW} \\ Q_{qW} \\ Q_{pS} \end{array}$	$\varphi^{\dagger}\varphi W^{I}_{\mu\nu}W^{I}\mu\nu$ $\varphi^{\dagger}\varphi \widetilde{W}^{I}_{\mu\nu}W^{I}\mu\nu$ $\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uG} Q_{uW} Q_{uS}	$\begin{array}{c} (\bar{q}_{\mu}\sigma^{\mu\nu}T^{A}u_{\nu})\bar{\varphi}G^{A}_{\mu\nu}\\ (\bar{q}_{\mu}\sigma^{\mu\nu}u_{\nu})\tau^{I}\bar{\varphi}W^{I}_{\mu\nu}\\ (\bar{q}_{\mu}\sigma^{\mu\nu}u_{\nu})\bar{\varphi}B_{\mu\nu} \end{array}$	$\begin{array}{c} Q_{ee} \\ Q_{ee}^{(1)} \\ Q_{ee}^{(2)} \\ Q_{ee}^{(3)} \end{array}$	$(\varphi^{\dagger}i \vec{D}_{\mu} \varphi)(\bar{e}_{\mu} \gamma^{\mu} e_{\nu})$ $(\varphi^{\dagger}i \vec{D}_{\mu} \varphi)(\bar{q}_{\nu} \gamma^{\mu} q_{\nu})$ $(\varphi^{\dagger}i \vec{D}_{\mu}^{I} \varphi)(\bar{q}_{\nu} \tau^{I} \gamma^{\mu} q_{\nu})$	Q_{tedq} $Q_{queq}^{(1)}$	(RL) and $(LR)(LR)(\tilde{l}_{p}^{i}c_{r})(\tilde{d}_{r}g_{1}^{i})(g_{1}^{i}u_{r})v_{r}\mu(g_{1}^{i}d_{l})$	Qere Qere	B-via $\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} [(d_p^{\alpha})$ $\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk} [(q_p^{\alpha})$	"Cu;	
$\begin{array}{c} Q_{\mu\bar{k}} \\ Q_{\mu\bar{k}0} \\ Q_{\mu\bar{k}0} \end{array}$	$\varphi^{\dagger}\varphi \overline{B}_{\mu\nu}B^{\mu\nu}$ $\varphi^{\dagger}\tau^{J}\varphi W^{J}_{\mu\nu}B^{\mu\nu}$ $\varphi^{\dagger}\tau^{J}\varphi \widetilde{W}^{J}_{\mu\nu}B^{\mu\nu}$	Qaa Qaw Qaw	$(\bar{q}_{\mu}\sigma^{\mu\nu}T^{A}d_{\nu})\varphi G^{A}_{\mu\nu}$ $(\bar{q}_{\mu}\sigma^{\mu\nu}d_{\nu})\tau^{I}\varphi W^{I}_{\mu\nu}$ $(\bar{q}_{\nu}\sigma^{\mu\nu}d_{\nu})\varphi B_{\mu\nu}$	Q_{ga} Q_{gd} Q_{gad}	$(\varphi^{\dagger} i \vec{D}_{\mu} \varphi) (\bar{u}_{\rho} \gamma^{\mu} u_{r})$ $(\varphi^{\dagger} i \vec{D}_{\mu} \varphi) (\bar{d}_{\rho} \gamma^{\mu} d_{r})$ $i (\hat{\varphi}^{\dagger} D_{\mu} \varphi) (\bar{u}_{\rho} \gamma^{\mu} d_{r})$	$Q_{gapl}^{(0)}$ $Q_{logs}^{(0)}$ $Q_{logs}^{(2)}$	$\begin{array}{l} \langle q_{\beta}^{i}T^{i\dagger}u_{r}\rangle e_{ji}(q_{s}^{i}T^{i\dagger}d_{t}) \\ (l_{j}^{i}c_{r})\varepsilon_{ji}(\dot{q}_{s}^{i}u_{t}) \\ (\dot{l}_{j}^{i}\sigma_{\mu}c_{r})\varepsilon_{ji}(\dot{q}_{s}^{i}u_{t}) \end{array}$	$Q_{em}^{(1)}$ $Q_{em}^{(2)}$ Q_{em}	$e^{\alpha\beta\gamma} e_{\mu\nu} e_{\alpha\alpha} [(q_p^{\alpha}) e_{\alpha\alpha}] e^{\alpha\beta\gamma} \langle \tau^{\dagger} e \rangle_{\mu\nu} \langle \tau^{\dagger} e \rangle_{\alpha\alpha} e^{\alpha\beta\gamma} [(d_p^{\alpha}) e^{\alpha\beta\gamma}] e^{\alpha\beta\gamma} [(d_p^{\alpha})]$	$[(q_F^{\alpha j})^3$	$Cq_{\tau}^{(k)}[(q_{\tau}^{(m)})^T Cl_{\tau}^{n}]$

- Write down all possible (non-redundant) dimension-6 operators ...
- 59 operators (76 parameters) for 1 generation, or 2499 parameters for 3 generations. [arXiv:1008.4884] Grzadkowski, Iskrzyński, Misiak, Rosiek, [arXiv:1312.2014] Alonso, Jenkins, Manohar, Trott.
- A full global fit with all measurements to all operator coefficients?
 - ▶ We usually only need to deal with a subset of them, *e.g.* ~ 20-30 parameters for **Higgs and electroweak** measurements.
- Do a global fit and present the results with some fancy bar plots!

You can't really separate Higgs from the EW gauge bosons!

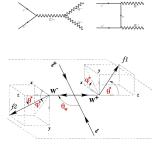
 $\begin{array}{l} \bullet \quad \mathcal{O}_{H\ell} = iH^{\dagger} \overrightarrow{D_{\mu}} H \overline{\ell}_{L} \gamma^{\mu} \ell_{L}, \\ \mathcal{O}_{H\ell}' = iH^{\dagger} \sigma^{a} \overrightarrow{D_{\mu}} H \overline{\ell}_{L} \sigma^{a} \gamma^{\mu} \ell_{L}, \\ \mathcal{O}_{He} = iH^{\dagger} \overrightarrow{D_{\mu}} H \overline{e}_{R} \gamma^{\mu} e_{R} \end{array}$

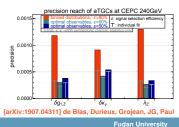
(or the ones with quarks)

- modifies gauge couplings of fermions,
- also generates hVff type contact interaction.

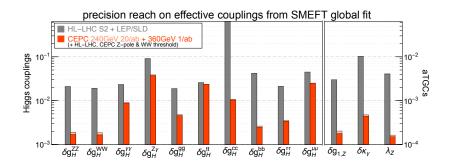
- $\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}, \\ \mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$
 - generate **aTGCs** $\delta g_{1,Z}$ and $\delta \kappa_{\gamma}$,
 - also generates *HVV* anomalous couplings such as hZ_μ∂_νZ^{μν}.

$e^+e^- ightarrow WW$ with Optimal Observables

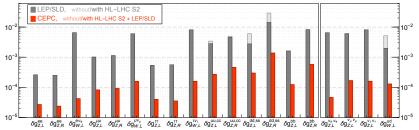

- TGCs (and additional EFT parameters) are sensitive to the differential distributions!
 - One could do a fit to the binned distributions of all angles.
 - Not the most efficient way of extracting information.
 - Correlations among angles are sometimes ignored.
- What are optimal observables?


(See e.g. Z.Phys. C62 (1994) 397-412 Diehl & Nachtmann)

In the limit of large statistics (everything is Gaussian) and small parameters (linear contribution dominates), the best possible reaches can be derived analytically!

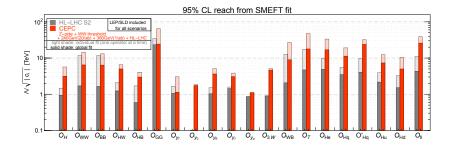

$$rac{d\sigma}{d\Omega} = S_0 + \sum_i S_{1,i} \, g_i \,, \qquad c_{ij}^{-1} = \int d\Omega rac{S_{1,i} S_{1,j}}{S_0} \cdot \mathcal{L}$$

- Current work on an improved analysis with machine learning. (Shengdu Chai, JG, Lingfeng Li)
- A more realistic experimental analysis is needed!



Jiayin Gu (顾嘉荫)

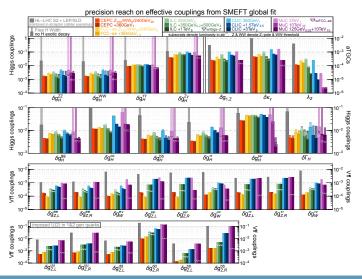
- 28-parameter fit projected on Higgs couplings and anomalous triple gauge couplings.
- ► $\delta g_H^{ZZ} \approx \delta g_H^{WW}$ from theoretical constraints (gauge invariance & custodial symmetry) and EW measurements.
- ▶ Non-negligible improvement from the 360 GeV run.


SMEFT global fit (Vff couplings) (earlier draft)

precision reach on the Vff couplings from the full EFT fit

• U(2) symmetry imposed on first two generation quarks.

Jiayin Gu (顾嘉荫)

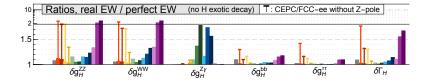

- 20-parameter fit (assuming flavor universality in gauge-fermion couplings).
- See next page for the operator basis.

$\mathcal{O}_{\mathcal{H}} = \frac{1}{2} (\partial_{\mu} \mathcal{H}^2)^2$	$\mathcal{O}_{GG}=g_{s}^{2} \mathcal{H} ^{2}G_{\mu u}^{A}G^{A,\mu u}$
$\mathcal{O}_{WW} = g^2 \mathcal{H} ^2 W^a_{\mu\nu} W^{a,\mu\nu}$	$\mathcal{O}_{y_u} = y_u H ^2 \bar{q}_L \tilde{H} u_R + \text{h.c.} (u \to t, c)$
$\mathcal{O}_{BB} = g^{\prime 2} H ^2 B_{\mu u} B^{\mu u}$	$\mathcal{O}_{V_d} = y_d H ^2 \bar{q}_L H d_R + \text{h.c.} (d \to b)$
$\mathcal{O}_{HW} = ig(D^{\mu}H)^{\dagger}\sigma^{a}(D^{\nu}H)W^{a}_{\mu\nu}$	$\mathcal{O}_{y_e} = y_e H ^2 \overline{I}_L He_R + \text{h.c.} (e \to \tau, \mu)$
$\mathcal{O}_{HB} = ig'(D^{\mu}H)^{\dagger}(D^{\nu}H)B_{\mu\nu}$	$\mathcal{O}_{3W} = \frac{1}{3!} g \epsilon_{abc} W^{a\nu}_{\mu} W^{b}_{\nu\rho} W^{c\rho\mu}$
$\mathcal{O}_{W} = \frac{ig}{2} (H^{\dagger} \sigma^{a} \overleftrightarrow{D_{\mu}} H) D^{\nu} W^{a}_{\mu\nu}$	$\mathcal{O}_{B} = \frac{ig'}{2} (H^{\dagger} \overleftrightarrow{D_{\mu}} H) \partial^{\nu} B_{\mu\nu}$
$\mathcal{O}_{WB} = gg' H^{\dagger} \sigma^a H W^a_{\mu\nu} B^{\mu\nu}$	$\mathcal{O}_{H\ell} = iH^{\dagger} \overleftrightarrow{D_{\mu}} H \bar{\ell}_L \gamma^{\mu} \ell_L$
$\mathcal{O}_T = \frac{1}{2} (H^{\dagger} \overleftrightarrow{D_{\mu}} H)^2$	$\mathcal{O}_{H\ell}' = iH^{\dagger}\sigma^{a}\overrightarrow{D_{\mu}}H\overline{\ell}_{L}\sigma^{a}\gamma^{\mu}\ell_{L}$
$\mathcal{O}_{\ell\ell} = (\bar{\ell}_L \gamma_{\ell}^{\mu} \ell_L) (\bar{\ell}_L \gamma_{\mu} \ell_L)$	$\mathcal{O}_{He}=\textit{iH}^{\dagger}\overrightarrow{D_{\mu}}H\overline{e}_{R}\gamma^{\mu}e_{R}$
$\mathcal{O}_{Hq} = i H^{\dagger} \overleftrightarrow{D_{\mu}} H \overline{q}_L \gamma^{\mu} q_L$	$\mathcal{O}_{Hu} = iH^{\dagger} \overleftrightarrow{D_{\mu}} H \overline{u}_R \gamma^{\mu} u_R$
$\mathcal{O}_{Hq}^{\prime} = iH^{\dagger}\sigma^{a}\overrightarrow{D_{\mu}}H\overline{q}_{L}\sigma^{a}\gamma^{\mu}q_{L}$	$\mathcal{O}_{Hd} = i H^{\dagger} \overleftrightarrow{D_{\mu}} H \overline{d}_R \gamma^{\mu} d_R$

- ▶ SILH' basis (eliminate \mathcal{O}_{WW} , \mathcal{O}_{WB} , $\mathcal{O}_{H\ell}$ and $\mathcal{O}'_{H\ell}$)
- ▶ Modified-SILH' basis (eliminate \mathcal{O}_W , \mathcal{O}_B , $\mathcal{O}_{H\ell}$ and $\mathcal{O}'_{H\ell}$) (used here)
- Warsaw basis (eliminate \mathcal{O}_W , \mathcal{O}_B , \mathcal{O}_{HW} and \mathcal{O}_{HB})

Results from the recent snowmass SMEFT global fit study

[2206.08326] de Blas, Du, Grojean, JG, Miralles, Peskin, Tian, Vos, Vryonidou



Jiayin Gu (顾嘉荫)

Fudan University

Impacts of (lack of) the Z-pole run

[2206.08326] de Blas, Du, Grojean, JG, Miralles, Peskin, Tian, Vos, Vryonidou

- Without good Z-pole measurements, the eeZh contact interaction may have a significant impact on the Higgs coupling determination.
- Current (LEP) Z-pole measurements are not good enough for CEPC Higgs measurements!
- The CEPC Z-pole measurements are!

Fudan University

Jiayin Gu (顾嘉荫)

Update measurement inputs (if any)

- Any updates to the numbers in CEPC Snowmass report [2205.08553] ?
- This is the most essential part!
- More measurements?
 - Top mass measurement
 - Diboson measurement ($e^+e^-
 ightarrow WW$)
 - $\blacktriangleright \ e^+e^- \to \gamma\gamma/Z\gamma/ZZ \dots$
 - ► ...
- More interpretations?
 - Overlap with the new physics white paper?
- Timeline/deadline?

backup slides

Jiayin Gu (顾嘉荫)

CEPC EW physics: towards White Paper

Fudan University