

CEPC requirement on electronics

Wei Wei

2023-11-18

Many thanks to Jingbo Ye, Jun Hu, Manqi Ruan, Zhijun Liang, Yunpeng Lu, Yiming Li, Huirong Qi, Mingyi Dong, Yong Liu, and Suen Hou...for the discussion

Outline

- Motivation
- Detector background
- Requirements from the CEPC detectors
- Considerations for the CEPC electronics design
 - The Frontend Electronics (FEE)
 - The Backend Electronics (BEE)
 - Common interface to other systems

Motivation

- TDR is coming soon after 5 years R&D since CDR
- Several related discussions in previous workshops
 - > TDAQ discussion @ Shanghai 2020, Yangzhou 2021
 - Detector requirements for the TDAQ, especially data volume, were collected
 - > The 4th conceptual detector design was proposed @ Yangzhou 2021
- It is time to update and converge from all detector R&Ds to an electronics system design

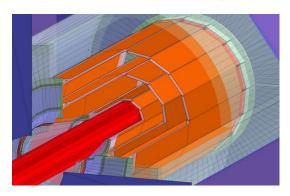
From the previous TDAQ discussion

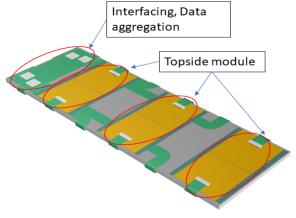
	Vertex	Silicon	TPC	DC	ECAL	HCAL	DR CAL	Muon	LumiCal
		Tracker							
Total Volume	4Gb/s/chip*5000	10Gb/s*4k=40	13.8GB/s	>=1TB/s	11.6+9GB/s	0.3+1.5GB/s	~40GB/s	300M	2.1*2GB/
	~=20Tb/s	Tb/s						B/s	s
Zero-Suppressi	Yes	1/(5-10),<10T	Yes	YES,~=60G	NA	NA	YES	YES	Yes,0.01
on		B/s		B/s					
Trigger based	160Mb/s/chip*5	Same	Yes	60GB/s	YES	YES	YES	YES	21*2MBp
	000								s
Trigger(less)	Both,Trigger	Trgger based,	Triggerless	Trigger	YES	YES	NA	No,Ma	YES
	based prefer	triggerless	possible	based				ybe	
		possible							
clocks	NA	Yes	Yes	NA	NA	NA	NA	NA	NA

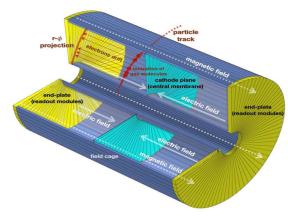
- The discussions mainly focused on data rate calculation
- Not go into details of the electronics system

ZA Liu, CEPC workshop 2020 Later updated in CEPC2021

The main goal of this discussion




- Collect requirements from related detectors on electronics
 - > Vertex, Tracker, TPC, Drift Chamber, CAL, LGADTOF, LumiCal...
- Common question template on requirement
 - > On physics requirement
 - Detector target
 - Parameters that measures (T, E, dE/dx, dN/dx, ...)
 - On signal processing
 - Detector channels for electronics
 - Counting rate
 - Signal characteristics (Q, I, V, rising/falling edge, width...)
 - Dynamic rage
 - Requirement on measurement (linearity, accuracy...)
 - On overall system
 - Detector interface (cabling, socket, detector impedance ...)
 - Power budget & material budget
 - Working conditions (temperature, cooling, special mechanics...)


> ...

Brief summary of the sub-detectors requirements

Vertex

- Small electrode MAPS
- 2D resolution ~3µm, with fast readout capability
 - Hit rate ~40MHz/cm² @ W, ~32bit/hit
 - Timestamp with 25ns resolution for Z pole
 - Data rate: 205Gbps@Trigger;5.12Tbps@Triggerless
- Lower material budget

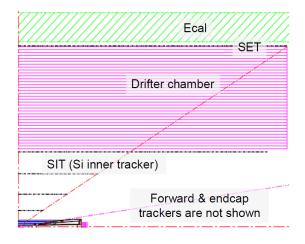
Tracker

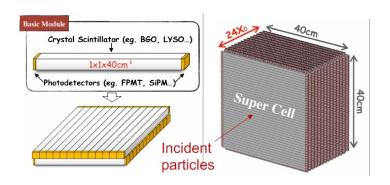
- ~10μm spatial resolution @ r-φ
- > ~70-140m² with ~50µm pixel pitch
- Should be cost effective (like HVCMOS)
- 1Gbps data link per module and 10+
 Gbps high speed link per structure

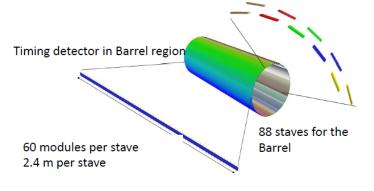
Overall system

- > 160mW/cm² => 2.6W/module (O(100kW) for all)
- Liquid cooling expected @-20 °C

TPC


- ~100μm spatial resolution @ r-φ
- GEM+µMEGAS / Pixel TPC
- dE/dx resolution: <5%</p>
- > Time resolution : ~100ns
- > 840K channels => should be really low power
- Data rate: 110Gbps for the overall detector


Overall system


> CO₂ cooling

Brief summary of the sub-detectors requirements

PID Drift Chamber

> dN/dx for cluster counting method

Parameters	Value	Parameters	Value
Rising	0.5~1ns	Falling	~tens ns
Pulse width	Hundreds ns	Pulse spacing	few~dozen ns
Amplitude	Dozen~hundr ed nA	Pulse charge	Ten~dozen fC

256 Gbps

20 Gbps

1 kHz

25k

6.4 Tbps

100 kHz

800 Gbps

CAL

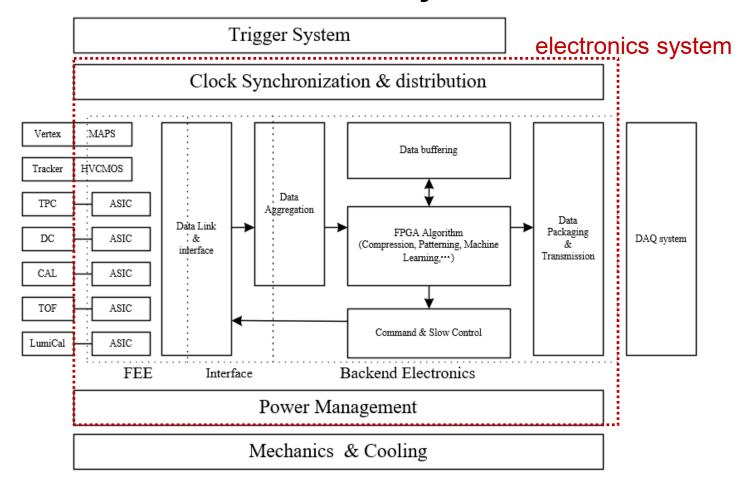
- Long crystal bars with dual-end readout by SiPM/FPMT
- large dynamic and fast frontend for electronics – 5D CAL
 - Dynamic range 0.1~10³ MIPs
 - Timing resolution ~400ps
- Channels:
 - ECAL: ~0.85+0.36 M
 - HCAL: ~70M
- Large number of chn: lower power & low cost

LGAD TOF

- Strip-like sensor (4cm imes 0.1 cm) @ AC-LGAD
- Recommended by the Int. Advisory Committee
- A Timing detector and part of the tracker (SET)
 - Timing resolution: 30-50 ps
 - Spatial resolution: ~ 10 μm
- Signal measurement
 - TOA + TOT

Trigger rate

bandwidth


Max #wires/event

50 peaks/wire*, 16bit/peak from F.Grancagnolo

Trigger-less

Consideration of the CEPC electronics system

- Q: (except Front ASIC) can we make the electronics system in a unified style?
- Q: what is the border between detector/FEE, FEE/data interface, frontend/backend, electronics/trigger, ...?

	Vertex	Tracker	TPC	DC	CAL	TOF	LumiCal
Detector for readout	CMOS Sensor	HVCMOS	GEM / Pixel	Drift chamber	SiPM	Strip-LGAD	Si Strip SiPM
Main Func for FEE	X+Y	XY + nsT	E + nsT	Cluster counting	E + psT	X + psT	X for strip E for SiPM
Channels per chip	500k Pixelized	50k Pixelized	128 / Pixelized	-	32~128	128	32~128
Ref. Signal processing	XY address + timestamp	Timestamp + TOT	Wave + ADC/ Pixel	Ultra fast PA + ADC	TOT + TOA/ ADC + TDC	ADC + TDC / TOT+TOA	ADC
Main challenge for FEE	Small pixel sizeFast readoutLow power	Large areaCost effectiveLow power	 Low power ADC with high sampling rate 	Ultra fast PAUltra fast ADC	 ~10⁴ dynamic range ~400ps timing Huge channel Low power 	• ~30ps timing	Fast ADC
Other Comments	CIS technology an issue	HVCMOS technology an issue		Technolo gy for PA an issue	All challenges combinedShould be cost effective		

 Dedicated AFEs have to be designed while various but major challenges have to be solved

Detector R&D activities widely conducted, while...

roj	ects overvie	w: FTE	l: 156	12	56	16
DRC	Task Name	Team	Faculty	Postdoc	Students	
PBS	CEPC Detector R&D Project	leam	racuity	Postdoc	Students	Engineers
1	Vertex					
1.1	Vertex Prototype	China+ international collaborators	21		17.2	3.5
1.2	ARCADIA CMOS MAPS	INFN, Italy		ı v staff INFN and Un		3.5
2	Tracker	irrir, icaly	33 people, mostly	Stair intrivation of	rversity Associates	
2.1	TPC Module and Prototype	IHEP, Tsinghua	3		4	1
2.2	Silicon Tracker Prototype	China, UK, Italy	50		4	5
2.3	Drift Chamber Activities	INFN, Novosibirsk	2.5	2.4	1.8	0.8
3	Calorimetry	Ĺ	2.5	2.7	1.0	0.8
3.1	ECAL Calorimeter					
3.1.1	Crystal Calorimeter	IHEP, Princeton + others	1.3		1.5	
3.1.2	PFA Sci-ECAL Prototype	USTC, IHEP	1.9		2.5	
3.2	HCAL Calorimeter					
3.2.1	PFA Digital Hadronic Calorimeter	SJTU, IPNL, Weizmann, IIT, USTC	2.1	1.8	2.6	0.3
3.2.2	PFA Sci-AHCAL Prototype	USTC, IHEP, SJTU	2.3	0.8	4	
3.3	Dual-readout Calorimeter	INFN, Sussex, Zagreb, South Korea	4.2	2.2	6.8	1.3
4	Muon Detector					
4.1	Scintillator-based Muon Detector	Fudan, SJTU	1.2		2.1	0.2
4.2	Muon and pre-shower μRWELL-	INFN, LNF	2	1.5	1	0.3
5	Solenoid					
5.1	LTS solenoid magnet	IHEP+Industry	2	0	1	0.5
5.2	HTS solenoid magnet	IHEP+Industry	1.5	0	1	0.5
6	MDI					
6.1	LumiCal Prototype	AC, IHEP	1	1	2	1
6.2	Interaction Region Mechanics	IHEP	0.5	0.3	1.5	2
8	Software and Computing	IHEP, SDU	7	2	3	0

R&Ds for various detectors, wide collaborations, large amount of man power, however...

Joao Costa, CEPC workshop 2021

	ects overvie	Total	: 156	12	56	16
PBS	Task Name	Team	Faculty	Postdoc	Students	Engineer
	CEPC Detector R&D Project					
1	Vertex					
1.1	Vertex Prototype	China+ international collaborators	21		17.2	3.5
1.2	ARCADIA CMOS MAPS	INFN, Italy	55 people, mostly	staff INFN and Un	iversity Associates	
2	Tracker					
2.1	TPC Module and Prototype	IHEP, Tsinghua	3		4	1
2.2	Silicon Tracker Prototype	China, UK, Italy	50		4	5
2.3	Drift Chamber Activities	INFN, Novosibirsk	2.5	2.4	1.8	0.8
3	Calorimetry					
3.1	ECAL Calorimeter					
3.1.1	Crystal Calorimeter	IHEP, Princeton + others	1.3		1.5	
3.1.2	PFA Sci-ECAL Prototype	USTC, IHEP	1.9		2.5	
3.2	HCAL Calorimeter					
3.2.1	PFA Digital Hadronic Calorimeter	SJTU, IPNL, Weizmann, IIT, USTC	2.1	1.8	2.6	0.3
3.2.2	PFA Sci-AHCAL Prototype	USTC, IHEP, SJTU	2.3	0.8	4	
3.3	Dual-readout Calorimeter	INFN, Sussex, Zagreb, South Korea	4.2	2.2	6.8	1.3
4	Muon Detector					
4.1	Scintillator-based Muon Detector	Fudan, SJTU	1.2		2.1	0.2
4.2	Muon and pre-shower μRWELL-	INFN, LNF	2	1.5	1	0.3
5	Solenoid					
5.1	LTS solenoid magnet	IHEP+Industry	2	0	1	0.5
5.2	HTS solenoid magnet	IHEP+Industry	1.5	0	1	0.5
6	MDI					
6.1	LumiCal Prototype	AC, IHEP	1	1	2	1
6.2	Interaction Region Mechanics	IHEP	0.5	0.3	1.5	2

	Vertex	Tracker	TPC	DC	CAL	TOF	LumiCal
Dedicated ASIC exists?	Υ	Υ	Υ	-	Y/N	-	-
Candidate chips	Jadepix / MIC Taichupix	HVCMOS on SMIC55	WASA (AFE + ADC)	-	-	-	-
Chips used for R&D	Jadepix / MIC Taichupix / CPV	ATLASPix3	CASAGEM / Gridpix	PA box + ADC module	SPIROC PIST	ALTIROC	-

Requirements to electronics not only from specification, but a deeper involvement in dedicated designs

Data link from FEE to backend

	Vertex	Tracker	TPC	DC	CAL	TOF	LumiCal
Data rate per chip	160Mbps @trigger / 4Gbps @triggerless	1.28Gbps@tr iggerless	-	-	-		-
Data rate per module	3.2Gbps@Trig ger / 80Gbps@Trigg erless	O(Gbps)@ module O(10Gbps)@ structure	-	-	-	-	-
Overall data rate	205Gbps@Trig ger / 5.12Tbps@Tri ggerless	~40Tbps	110Gbps	800Gbps@ Trigger / 6.4Tbps @triggerles s	93Gbps + 72Gbps		33.6Gbps

Q: high speed serial link needed inside FE chips?

- > maybe yes for vertex & tracker, especially for triggerless mode
- Q: data aggregation chip needed at the module/structure level?
 - maybe yes for vertex & tracker

Q: possible to follow a common protocol & interface for data link?

- Interface designs may vary due to the CMOS process, protocol can be unified
- > Cabling? Optical? Or even wireless?
- Has to be rad-tol.

From FEE to BEE

- Dedicated algorithm in FPGA may have to vary from detectors
 - Related to triggering, data compression, machine learning
 - Data aggregation for different AFE, if it is done in FPGA
- Rest are possible to be designed in a unified style
 - Clock synchronization & distribution
 - Data buffering
 - Data packaging and transmission to DAQ
 - Powering
 - Slow control
 - Issue: most has an interface with other system (TRG, DAQ, Mechanics ...), not well defined yet
- Q: major challenges exist with huge data rate, especially triggerless
 - Very likely, new methodology has to be involved, yet no R&D
- Q: do we need special algorithm for new physics approach, like PFA?
 - Needs input from physics simulation
- Issue: yet not a dedicated BEE system R&D for CEPC

Interface between (LvI 1) Trigger and Electronics

14

- Common Question: Trigger or Triggerless?
 - > For some sub-detector, data volume really an issue for triggerless
 - > Part of the detectors on trigger, rest triggerless?
 - Smart & local track/cluster finding to compress data? While R&D required
- Q: who needs TRG input? Who contributes to TRG?

	Vertex	Tracker	TPC	DC	CAL	TOF	LumiCal
get TRG	Υ	Υ	Υ	Υ	Υ	Υ	Υ
Generate TRG info	N	N	Υ	Υ	Υ	Υ	Υ
Data volume an issue for triggerless?	Maybe 5.12Tbps	Maybe 40Tbps	-	Maybe 6.4Tbps	-	-	-

- Q: where in electronics, AFE or BEE, to communicate with TRG?
 - > If in ASIC AFE, trigger interface has to be defined asap before finalization
 - The latency and data buffering is also a critical issue for the chip design
 - > Issue: need a overall consideration on TRG strategy, not only on calculation of the data volume

Interface with other systems

Clocking

- How to synchronize with BX clock?
 - Multiple bunch spacings: Higgs: 680ns; W: 210ns; Z: 25ns
- What clock needed for different detector?

Power management

- Overall powering design maybe too early for CEPC
- Consideration on AFE powering has to start
 - Serial powering? Rad-tol powering blocks?

Cooling

- > Has to be integrated closely with electronics system
- Designs greatly depend on the cooling strategy, especially for AFEs
 - Air cooling or liquid cooling? Or Mixed?

Mechanics

- Special mechanic scheme has to be generally defined for the design of AFE
 - e.g. Vertex on long Flex, ECAL module organization for HG...
- Technology vender for low material still an issue
 - e.g. Aluminum Flex Cable for Vertex not available
- Needs input if any special requirements to electronics exist

What to do next?

Further and thorough discussion with other systems

> A topical workshop on CEPC electronics may be more effective

R&Ds and time needed for the major challenge

- Each R&D cost at least ~5 to 10 year if from scratch
- > ASIC developed for specific detectors involved in each detector system
- > Real time data compression and machine learning algorithm
- > Rad-tol ASICs for common applications
 - Data link chips & unified protocol
 - Powering chips (LDO, DC-DC) and module
- R&D for the possible wireless communications

Manpower a big issue

> Please ref to the talk given by Paulo in the plenary session, on how many people involved for LHC

Summary

- Detector requirements to electronics system preliminarily collected
- Many questions, waiting to answers
- Various AFE await for a dedicated design, yet not a clear shape and plan of a overall electronics design for CEPC
- Some critical considerations must be taken now

Thank you very much for your attention!

Reference all based on previous workshops of CEPC, if not listed

Detector Background: the CEPC Detector Designs

Si Tracker

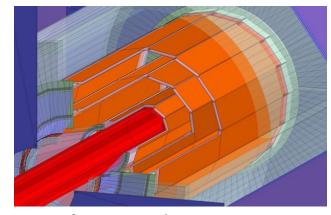
Transverse Crystal bar ECAL

Si Vertex

Advantage: better π^0/γ reconstruction. **Challenges:** minimum number of readout channels; compatible with PFA calorimeter; maintain good jet resolution.

Drift chamber that is optimized for PID

resolution (e.g. BMR); stability.


Advantage: Work at high luminosity Z runs **Challenges**: sufficient PID power; thin enough not to affect the moment resolution.

JC Wang, CEPC workshop 2021

Physics driven requirements		Running constraints	S	Sensor specifications		
	ial budget ^{0.15%} X ₀ /layer 	Air coolingbeam-related background radiation damage		low power fast readout radiation tole ≤ 3.4 Mrad/	~1 μs rance year	
	Ref: CEPC Conceptual Design Report, Vo	lume II - Physics & Detector		$\leq 6.2 \times 10^{12} n_e$	_q / (cm² year)	

	R (mm)	z (mm)	Number of ladders	Number of chips
Layer 1	16	125.0		
Layer 2	18	125.0	10	200
Layer 3	37	125.0		
Layer 4	39	125.0	22	440
Layer 5	58	125.0		
Layer 6	60	125.0	32	640

A thin pixel detector with a small pixel size

Small electrode MAPS

Detector channels

- ▶ 64 double-sided ladders, ~1280 chips
- > ~ 0.5~1M pixels/chip
- 2D resolution ~3µm, with fast readout capability
 - → Hit rate ~40MHz/cm² @ W, ~32bit/hit
 - > Timestamp with 25ns resolution for Z pole
 - Data rate
 - 205Gbps@Trigger; 5.12Tbps@Triggerless

Overall system

- Lower material budget
 - Low power & air cooling & lower material mechanics
- Radiation tolerance

The Tracker

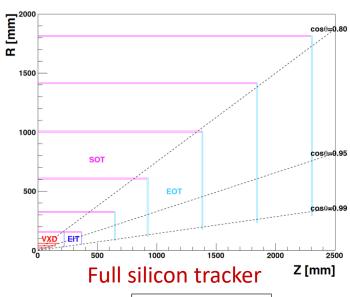
A large area silicon tracker with ~10μm spatial resolution @ r-φ

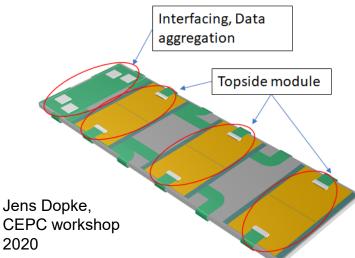
- > ~70-140m² with ~50µm pixel pitch
- Should be cost effective (like HVCMOS)

Hit rate and signal measurement

- \rightarrow 10⁻⁴ hit/cm²/event @ Z, ~10bits per hit
 - 10b time stamp + 7b TOT

Detector channels

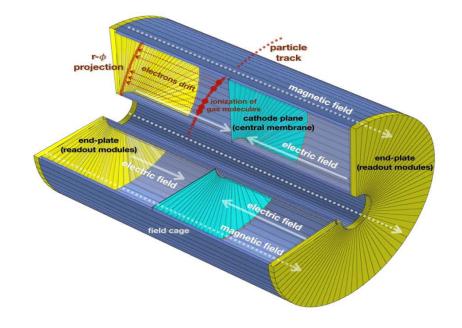

- ~60k modules (each with 4 chips)
- IGbps data link per module and 10+ Gbps high speed link per structure


Overall system

- > 160mW/cm² => 2.6W/module (O(100kW) for all)
- Liquid cooling expected @-20 °C

ATLASPix3 features

- TSI 180nm HV process on 200 Ωcm substrate
- Pixel size $50 \times 150 \,\mu\text{m}^2$
- 132 columns \times 372 rows (20.2 \times 21 mm² chip)
- Each pixel has 7-bit TOT + 10-bit timestamp
- Continuous / triggered readout with 8b10b / 64b66b coding
- Power consumption ~160 mW/cm².



silicon tracker module

TPC

Huirong Qi

Parameter	Specification
Noise	<200e
Conversion gain	>15mV/fC
Peaking time (defaul)	100ns
Non lineartity	<1%
Cross talk	<0.3%
Dynamic range	>2000
Power consumption	<5mW/ch

~100µm spatial resolution @ r-q

- Material budget: <1%X0 including outer field cage</p>
- ▶ GEM+µMEGAS / Pixel TPC

Hit rate and signal measurement

- Momentum resolution: ~10⁻⁴/GeV/c
- dE/dx resolution: <5%</p>
- ➤ Time resolution : ~100ns

Detector channels

- 5k chn/module; 84 module/endplate; 2 endplate => 840K channels => should be really low power
- > 6.5K ASIC chip if 128chn/chip

Data rate

- > 48K chn/hit @10-4/ BX / channel
- 7b chn ID + 9b ADC per hit + 2B per ASIC = 22KB / BX = 110Gbps for the overall detector

Overall system

- CO₂ cooling
- Trigger or triggerless

Drift Chamber

Mingyi Dong

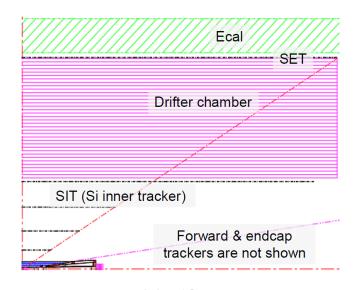
A Drift Chamber optimized for PID

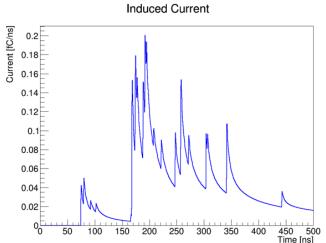
 \triangleright better than 2σ K/π separation for P < 20GeV/c

Signal measurement

dN/dx for cluster counting method

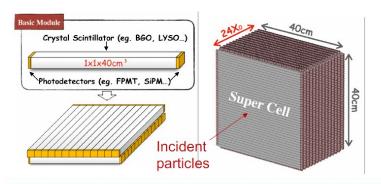
Signal characteristics


Parameters	Value	Parameters	Value
Rising	0.5~1ns	Falling	~tens ns
Pulse width	Hundreds ns	Pulse spacing (overlapping)	few~dozen ns
Amplitude	Dozen~hund red nA	Pulse charge	Ten~dozen fC


Detector channels and data rate

		Higgs	Z
Trigger-less		256 Gbps	6.4 Tbps
Trigger	Trigger rate	1 kHz	100 kHz
	Max #wires/event	25k	10k
	bandwidth	20 Gbps	800 Gbps

50 peaks/wire*, 16bit/peak from F.Grancagnolo


FY Guo, CEPC workshop 2021

CAL

Yong Liu Long crystal bars with dual-end readout by SiPM/FPMT

- large dynamic and fast frontend for electronics –5D CAL
- Large number of chn: lower power & low cost

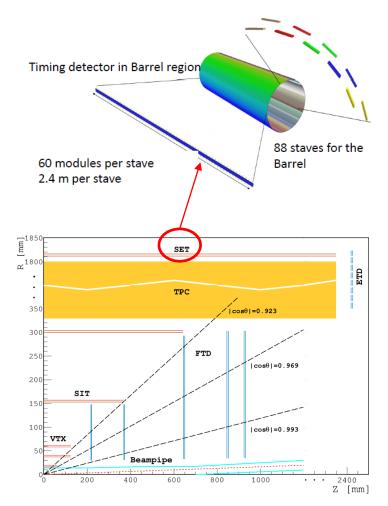
Key Parameters			Value/	ie/Range			Remarks						
MIP light yield			~200 p	~200 p.e./MIP ~			~8.9 MeV/MIP in 1 cm BGO						
Dynamic range		0.1~10 ³ MIPs		Energy range from ~1 MeV to ~10 GeV									
Energy threshold		0.1 MIP		Equivalent to ~1 MeV energy deposition									
Timing resolution		~400 ps		Limits from G4 simulation (validation needed)			eeded)						
Crystal	Crystal non-uniformity		< 1%		After calibration								
Tempe	Temperature stability		Stable at ~0.05 Celsius			Reference of CMS ECAL							
Gap to	Gap tolerance		~100 μm			TBD via module development							
ECAL	#Channels	Occupa ncy	#bit per	#readout channels/e	Data Volume per	Data rate at	ECAL options	#Channels [Million]	Occupancy [%]	#bit per channel	#readout channels/evt	Data Volume per event	Data rate at 100kHz
options	[Million]	[%]	channel	vt	event	100kHz	Scintillator HCA Barrel	AL 3.6	0.02	32	0.72 k	2.9 kByte	0.3 GBytes/s
Crystal ECAL with long bars (Barrel)	0.85	3.4	32	28.9 k	116 kByte	11.6 GBytes/s	Scintillator HCA Endcap	AL 3.1	0.12	32	3.72 k	15 kByte	1.5 Gbytes/s
<i>y t</i>							RPC HCAL Barrel	32	0.004	8	1.28 k	1.28 kByte	0.13 GBytes/s
Crystal ECAL with long bars (Endcap)	0.36	6.2	32	22.4 k	90 kByte	9.0 Gbytes/s	RPC HCAL Endcap	32	0.01	8	3.2 k	3.2 kByte	0.32 Gbytes/s

18/11/2023, CLHCP Workshop, Shanghai

LGAD TOF

Zhijun Liang
Recommended by the Int. Advisory Committee

Detector concept

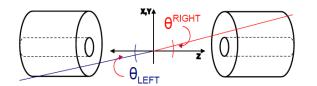

- Area of detector (Barrel : 50 m², Endcap 20 m²)
- Strip-like sensor (4cm × 0.1 cm)
- A Timing detector and part of the tracker (SET)
 - > Timing resolution: 30-50 ps
 - Spatial resolution: ~ 10 μm

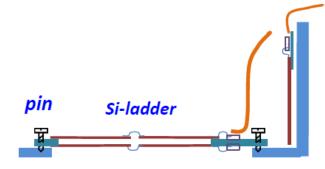
Signal measurement

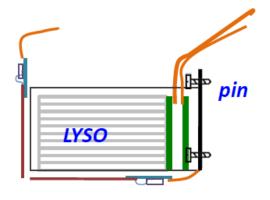
	ATLAS HGTD	CEPC TOF
Area (m²)	6.4	~ 70
Granularity	mm ² (1.3 mm ×1.3mm)	~ cm ² (40m × 0.2mm)
Channel number	~3.6 × 10 ⁶	~ 7×10 ⁶
Module assembly	Bump bonding	Wire bonding at strip
MIP Time resolution	30-50 ps	30-50 ps
Spatial resolution	~ 300 μm	~ 10 μm
探测器信号幅度	2fC- 20fC	2fC-20fC

Data rate

- 200kHz event @ 16bit/event (9bTOT + 7bTOA)
- > 100k chips for 70m²
- Power: < 2W per chip</p>


Baseline detector concept in CDR


18/11/2023, CLHCP Workshop, Shanghai


LumiCal

Suen Hou

Detector concept

- measure the Bhabha scattering events for the integrated luminosity
- Accuracy: 0.1% @ Higgs, 10⁻⁴ @ Z

Signal measurement

- > e+e- and low energy photons
- Using silicon strip + LYSO with SiPM

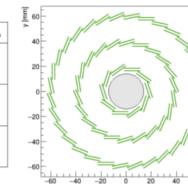
Parameters	Silicon strip	LYSO + SiPM		
Signal processing	Ultra fast ADC, 50ns signal width, 25 B.C. separation			
Interface	10Gbps optical link, Triggerless			
Signal dynamic range	MIP	0.3~100GeV (like ECAL)		
Channels	16K (2sides*2layers*4k)	14K (4 sets/side * 1.7K)		
Event rate	0.003 events /b.c.	0.00016 events/b.c.		
Power limit	40 chips @10W	10W per set		

■ Data volume: ~160 Mbps

Requirements of the CEPC Detector from Physics

The physics motivations dictate our selection of detector technologies

Physics process	Measurands	Detector subsystem	Performance requirement
$ZH,Z\rightarrow e^+e^-,\mu^+\mu^-$ $H\rightarrow \mu^+\mu^-$	$m_H,\sigma(ZH)$ ${ m BR}(H o\mu^+\mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$
H o bar b/car c/gg	${ m BR}(H o bar b/car c/gg)$	Vertex	$egin{aligned} \sigma_{r\phi} = \ 5 \oplus rac{10}{p({ m GeV}) imes { m sin}^{3/2} heta} (\mu{ m m}) \end{aligned}$
$H \rightarrow q\bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$	ECAL HCAL	$\sigma_E^{ m jet}/E = 3 \sim 4\%$ at $100~{ m GeV}$
$H o \gamma \gamma$	${\rm BR}(H\to\gamma\gamma)$	ECAL	$\Delta E/E = rac{0.20}{\sqrt{E({ m GeV})}} \oplus 0.01$


- Flavor physics \Rightarrow Excellent PID, better than 2σ separation of π/K at momentum up to ~20 GeV.
- EW measurements \Rightarrow High precision luminosity measurement, $\delta L / L \sim 10^{-4}$.

以CEPC顶点探测器为例

- 探测器方案
 - 信号特征、动态范围
 - 阈值~200e, 动态范围~1000e
 - 感兴趣量
 - 位置分辨: 3~5µm
 - 事例率
 - Hit Density from background: 2.5hits/bunch/cm² for Higgs/W; 0.2hits/bunch/cm² for Z
 - Bunch Spacing: Higgs: 680 ns; W: 210 ns; Z: 25 ns
 - 其他要求
 - 物质量: 0.15%
 - 探测器规模 (Taichu原型机)
 - 三层: Ladder共约64个
 - 双面ladder共含芯片1280片

	R (mm)	z (mm)	Number of ladders	Number of chips	
Layer 1	16	125.0			
Layer 2	18	125.0	10	200	
Layer 3	37	125.0			
Layer 4	39	125.0	22	440	
Layer 5	58	125.0			
Layer 6	60	125.0	32	640	

√s= 91 GeV √s= 160 GeV

√s= 240 GeV

VXD Radius [cm]

以CEPC顶点探测器(Taichu)为例

- 电子学方案
 - MAPS像素探测器@small electrode ——物质量、阈值200e
 - 像素尺寸: 16~25µm——位置分辨
 - 计数率: 40MHz/cm²
- 触发方案
 - 不参与触发, 仅接收触发
- 数据处理方案
 - 数字像素、像素自触发
 - 像素地址编码——感兴趣量
 - 辅助时间戳来帮助高计数率Trigger ID判断
- 数据率
 - 触发后数据率: 160Mbps/chip (50kHz触发率)
 - Triggerless: 4Gbps/chip
 - 读出方案: 高速串行
- 数据量
 - Ladder: 3.2Gbps@Trigger; 80Gbps@Triggerless
 - 探测器总体: 205Gbps@Trigger; 5.12Tbps@Triggerless

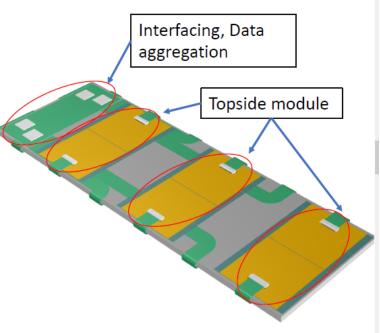
Main specs of the full size chip for high rate vertex detector

Bunch spacing

- Higgs: 680ns; W: 210ns; **Z**: 25ns
- Meaning 40M/s bunches (same as the ATLAS Vertex)
- Hit density
 - 2.5hits/bunch/cm² for Higgs/W;
 0.2hits/bunch/cm² for Z
- Cluster size: 3pixels/hit
 - Epi- layer thickness: ~18μm
 - Pixel size: $25\mu m \times 25\mu m$
- Hit rate: 120MHz/chip @W

- Two major constraints for the CMOS sensor
 - \Leftrightarrow Pixel size: $< 25\mu m^* 25\mu m (\sigma \sim 5\mu m)$
 - \rightarrow aiming for 16μm*16μm (σ ~3μm)
 - ⋄ Readout speed: bunch crossing @ 40MHz
- None of the existing CMOS sensors can fully satisfy the requirement of high-rate CEPC Vertex Detector
- TID is also a constraint

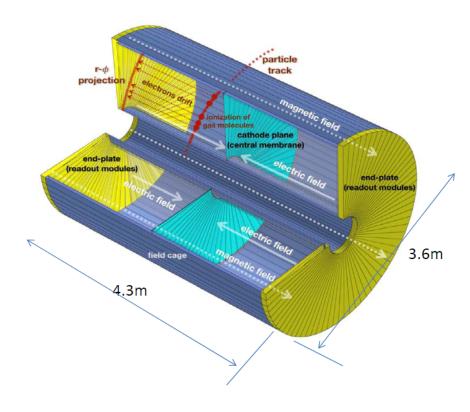
For Vertex	Specs	For High rate Vertex	Specs	For Ladder Prototype	Specs
Pixel pitch	<25µm	Hit rate	120MHz/chip	Pixel array	512row×1024col
TID	>1Mrad	Date rate	3.84Gbpstriggerless ~110Mbpstrigger	Power Density	< 200mW/cm ² (air cooling)
_		Dead time	<500ns for 98% efficiency	Chip size	~1.4cm×2.56cm



What might the silicon tracker look like

 Many large-scale structures (call them local support) supporting smaller units (call them modules) mechanically and electrically

- Medium Speed links per module to deliver data (Gb/s)
- High Speed link(s) per structure to transfer aggregated data from multiple modules (10+ Gb/s)
- 50m² of silicon based on active sensors at current reticule sizes:
 - About 150k active sensor chips
 - About 40k "modules"
 - As per previous numbers: O(4k) high speed links
- Expecting a particle/track occupancy of about 10⁻⁴/cm²/event in Z-mode
 - I work based on that, not involved enough with the physi to look at other numbers, but they'll be "easier"


TPC

Overview of TPC concept

TPC detector concept:

- Under 2-3 Tesla magnetic field (Momentum resolution: ~10-4/GeV/c with TPC standalone)
- Large number of 3D space points(~220 along the diameter)
- dE/dx resolution: <5%
- ~100 μm position resolution in rφ
 - \sim 60µm for zero drift, <100µm overall
 - Systematics precision (<20μm internal)
- TPC material budget
 - <1X₀ including outer field cage
- Tracker efficiency: >97% for pT>1GeV
- 2-hit resolution in $r\phi$: ~2mm
- Module design: ~200mm×170mm
- Minimizes dead space between the modules: 1-2mm

TPC detector concept

Requirements of TPC for TDAQ - I

Reference info from ALICE TPC / STAR TPC (in operation) and ILD TPC (future)

• Pads TPC (example)

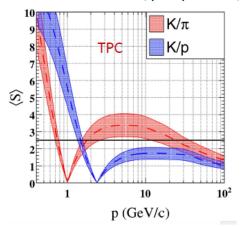
- There is full size TPC detector with the outer radius of 1.8m and inner radius of 0.3m. All of the two endplate mounted in two sides.
- Every channel will be connected in the small pad(1mm*6mm), thus the total number of channels is 5000/module*84/endplate*2=840K channels.
- Each ASIC has 128 channels and there is 6.5K ASIC chips integrated with the FEE and DAQ.
- The bunch crossing (BX) rate is 40 MHz and we need to deal with every BX at one IP in circular collider.
- Low power consumption FEE readout

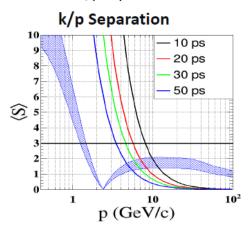
Experiment / Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements / Remarks
LHCb MUON DETECTOR > 2010	Hadron Collider / B-physics (triggering)	3-GEM	Total area: ~ 0.6 m ² Single unit detect: 20-24 cm ²	Max.rate:500 kHz/cm ² Spatial res.: ~ cm Time res.: ~ 3 ns Rad. Hard.: ~ C/cm ²	Redundant triggering
ATLAS MUON UPGRADE CERN LS2	Hadron Collider (Tracking/Triggering)	Resistive Micromegas	Total area: 1200 m ² Single unit detect: (2.2x1.4m ²) ~ 2-3 m ²	Max. rate:15 kHz/cm² Spatial res.: <100µm Time res.: ~ 10 ns Rad. Hard.: ~ 0.5C/cm²	Redundant tracking and triggering; Challenging constr. in mechanical precision
CMS MUON UPGRADE CERN LS2	Hadron Collider (Tracking/Triggering)	3-GEM	Total area: ~ 143 m ² Single unit detect: 0.3-0.4m ²	Max. rate:10 kHz/cm ² Spatial res.: ~100µm Time res.: ~ 5-7 ns Rad. Hard.: ~ 0.5 C/cm ²	Redundant tracking and triggering
ALICE TPC UPGRADE CERN LS2	Heavy-lon Physics (Tracking + dE/dx)	4-GEM / TPC	Total area: ~ 32 m ² Single unit detect: up to 0.3m ²	Max.rate:100 kHz/cm ² Spatial res.: ~300µm Time res.: ~ 100 ns dE/dx: 11 % Rad. Hard.: 50 mC/cm ²	- 50 kHz Pb-Pb rate; - Continues TPC readout - Low IBF and good energy resolution
CEPC TPC DETECTOR CDR	e+e- Collider (Tracking + dE/dx)	GEM+Micromegas or Pixel TPC	Total area: ~ 2x10 m² Single unit detect: up to 0.04m²	Max.rate:>100 kHz/cm² Spatial res.: ~100µm Time res.: ~ 100 ns dE/dx: <5%	- Higgs run - Z pole run - Continues TPC readout - Low IBF and dE/dx

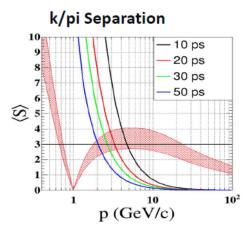
Crystal ECAL: specifications

Key Parameters	Value/Range	Remarks
MIP light yield	~200 p.e./MIP	~8.9 MeV/MIP in 1 cm BGO
Dynamic range	0.1~10 ³ MIPs	Energy range from ~1 MeV to ~10 GeV
Energy threshold	0.1 MIP	Equivalent to ~1 MeV energy deposition
Timing resolution	~400 ps	Limits from G4 simulation (validation needed)
Crystal non-uniformity	< 1%	After calibration
Temperature stability	Stable at ~0.05 Celsius	Reference of CMS ECAL
Gap tolerance	~100 μm	TBD via module development

Challenges/issues...


- Crystal size optimization, as well as realistic ECAL geometry design
- Sophisticated software for long bar crystal ECAL
- New BGO crystal with lower light output and faster decay time (collaboration with SIC-CAS)
- Limitation from SiPM dynamic range
- Radiation damage




LGAD development for CEPC time of flight detector: Motivation

- CEPC will produce 10¹² Z boson at Z pole: Rich flavor physics program
- Particle separation problems of Gas detector (dE/dx) for CEPC flavor physics:
 - 0.5-2 GeV for K/pi separation, >1.5 GeV for K/p separation
- CEPC International Advisory Committee: one of the key recommendations
 Precision timing detector should be determined as a matter of urgency (4D track)
- Timing detector is complementary to gas detector: improves the separation ability

- 1. 探测器名和基本功能(比如TPC,测带电粒子径迹):
 LumiCal, 测量加速器束流e+e-碰撞亮度 Luminosity
 架设在束流管 ±z = 700 mm, 法蓝内外,探测低角度电子,
 在e+e-碰撞时区内,筛选 Bhabha 弹性碰撞正负电子对事例,
 Monte Carlo QED 计算探测器事例量,反推出 Integrated Luminosity。
 准度要求 10-4。
- 2. 需要探测的物理量(比如时间,能量,原初电离dE/dx, 原初电离束团数dN/dx, 闪烁光,等等):

探测粒子: Ebeam 正负电子, 及跟随的 Final State Radiation 低能光子 (> ~ 1GeV)

在 bunch crossing 25 nsec · 分辨束流正负电子弹性反射

硅探测器: 电子 theta, phi 角度, 极端驱近 1 uRad 精准位置,

LYSO 晶调: 标定 > Ebeam/2 电子,及区隔邻近的 FSR 光子

- 3. 探测器对电子学输出的通道数,
 - 电子碰撞点硅条探测器: 每侧两层共4层, 每层4k ch. 总共16k 通道数 LYSO 晶条 SiPM 读出: 每侧 分前(2X0) 后(17X0) 共4套 LYSO 每套 170cm², 需1.7k ch. 总共 7k通道数
- 4. 单通道预计计数率,

Z lumi Lmax = 115×1034 /cm²s, LumiCal Bhabha 探测器覆盖截面 100 nb Event rate = $(246 \times 10^{-33}) \times (115 \times 10^{34})$ /sec = 115 kHz Event rate / 25 ns bunch crossing = 0.003 events /b.c. lowest theta (束流管上/下) hot LYSO $3 \times 3 \text{ mm}^2$ 6-cell cluster event fraction = 0.12, 最热区每LYSO cell事例量 \rightarrow 0.00016 events/b.c.

- 5. 信号特征:电荷?电流?电压?上升、下降时间,宽度? **硅条:** PN 二级 25k 电子电荷, ADC 需要极快, 宽 50 ns 内, 在 25 ns B.C. 前后事例分辨开
 - **LYSO SiPM:** ADC 需要极快, 宽 50 ns 内, 在 25 ns B.C. 前后事例分辨开, 12bit 100 GeV 线性能量测量
- 6. 信号传输方式(比如同轴电缆,PCB,接插件),阻抗特性。 前端PCB 缆线空间紧迫,可能放 ADC, serializer 接 10 Gbps 光纤读出 不做 trigger, 接 FPGA 做事例筛选
- 7. 最小、最大信号(也就是动态范围)。硅条 测 MIP 单点电离电荷LYSO SiPM 比照 ECAL 量测 300 MeV 到 100 GeV 电子
- 8. 对数字化的要求(LSB, 精度,线性度)。 LYSO SiPM 比照ECAL, 需要监测 Pileup, 因此,每25 ns B.C. 做一次 Signal Level comparator 确认临接事 例讯号是否被叠高
- 9. 探测器的工作温度和范围,如果电子学需要散热,可否和探测器温控在一起?有无对电子学的功耗限制和多少。

LumiCal 硅条及 SiPM 工作温度跟顶点探测器一致,约20 °C LumiCal 每层硅条 4k 通道需 40颗读出chip 估计发热 10W 内,LYSO 每套 1.7k 通道也在 10W 内。 每Z侧 40W,地线接到束流管冷确面。

From detector to frontend electronics

- 汇总分类
- 有关信号特征
 - » 电子、光子
- 信号处理需求
 - ▶ 位置测量
 - ▶ 幅度、电荷测量
 - > 时间测量
 - > 3D, 4D, 5D
- 通道规模
 - 和成本考虑

Common requirement for the backend

- 前端到后端接口
- 后端到DAQ接口
- 后端到slow control接口
- 电子学到机械接口(散热)
- 电子学整体接口(电源规划、时钟同步.....)