

The 9th China LHC Physics Workshop (CLHCP2023)

Higgs self-coupling measurement from HH + H combination and Higgs pairs in the $bb\gamma\gamma$ final state

Qiuping Shen^{*a,c,d*}, Kun Liu^{*a,b*}, Haijun Yang^{*a,b*}, Giovanni Marchiori^{*c,d*} [a].SJTU, [b].TDLI, [c].APC in Paris, [d].U. Paris Cite

Qiuping.Shen@cern.cn

Introduction

Higgs boson was discovered since 2012 and the measurement of its characteristics comes to a hot topic. Higgs self-coupling(κ_{λ}) is crucial to explore the shape of the Higgs potential. In this poster, the following two results will be talked.

• Legacy $HH \rightarrow b\overline{b}\gamma\gamma$: the most dominant and sensitive channel[1].

• $HH + H : \kappa_{\lambda}$ devoting to single Higgs via sizeable NLO EW correction[2]. Combining single-Higgs and double-Higgs could explore the Higgs selfinteraction and shed more light on the Higgs boson potential, the source of EW symmetry breaking in the SM.

HH + H combination

The Higgs self-interaction contributes to other processes via NLO EW corrections. Particularly, the single-Higgs productions and branching ratios are modified if κ_{λ} deviates from the SM prediction. Thus single-Higgs and di-Higgs are combined. More stringent constraints on κ_{λ} are reported based on the latest AT-LAS single Higgs combination results from $\gamma\gamma$, ZZ^* , WW^* , $\tau^+\tau^-$ and $b\overline{b}$ decay channel.

这道场

 $HH \rightarrow bb\gamma\gamma$ Analysis

Figure 1: HH Production via $ggF(\sigma = 31.02fb)$ and VBF($\sigma = 1.723fb$) at 13TeV

Analysis strategy

Preselection applied to choose the events with $bb\gamma\gamma$ signature:

- Two *tight* and *isolated* photons and (sub-)leading $pT/m_{\gamma\gamma} > 0.35(0.25)$

Figure 4: Examples of one-loop λ_{HHH} -dependent diagrams

HH combined from *bbbb*, $bb\tau^+\tau^-$ and $bb\gamma\gamma$ channels shown in Fig 5. The observed (expected) is $\mu_{HH} < 2.4(2.9)$ at 95% CL.

Figure 5: Di-Higgs combination results from three dominant channels.

• Exactly 2 b-jets with WP77 for DL1r, No leptons, $N_{jet} > 2$ and $N_{central jet} < 6$ XGBoost classifier respectively defined for:

low mass ($M^*_{b\bar{b}\gamma\gamma}$ < 350 GeV) and high mass ($M^*_{b\bar{b}\gamma\gamma} \ge 350$ GeV Final events categorized to seven fit regions as shown in Fig 2.

Figure 2: Event selection strategy and BDT distribution

Statistical results

Two scenarios are considered:

• κ_{λ} only: Fit with κ_{λ} floating and all other coupling modifiers fixed to unity. • κ_{λ} generic: Fit with all coupling modifiers floating except for κ_{2V} fixed to unity.

Figure 6: Observed constraints for κ_{λ} and κ_t .

Combination assumption	Obs. 95% CL	Exp. 95% CL	Obs. value $^{+1\sigma}_{-1\sigma}$
HH combination	$-0.6 < \kappa_\lambda < 6.6$	$-2.1 < \kappa_\lambda < 7.8$	$\kappa_{\lambda} = 3.1^{+1.9}_{-2.0}$
Single- <i>H</i> combination	$-4.0 < \kappa_\lambda < 10.3$	$-5.2 < \kappa_\lambda < 11.5$	$\kappa_{\lambda} = 2.5^{+4.6}_{-3.9}$
HH+H combination	$-0.4 < \kappa_\lambda < 6.3$	$-1.9 < \kappa_\lambda < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
<i>HH</i> + <i>H</i> combination, κ_t floating	$-0.4 < \kappa_\lambda < 6.3$	$-1.9 < \kappa_\lambda < 7.6$	$\kappa_{\lambda} = 3.0^{+1.8}_{-1.9}$
<i>HH</i> + <i>H</i> combination, κ_t , κ_V , κ_b , κ_τ floating	$-1.4 < \kappa_\lambda < 6.1$	$-2.2 < \kappa_\lambda < 7.7$	$\kappa_{\lambda} = 2.3^{+2.1}_{-2.0}$

Figure 7: Summary of κ_{λ} observed and expected constraints.

Fitted results

Figure 3: Negative likelihood 1D and 2D scan results for κ_{λ} , κ_{2V}

Unbinned likelihood was performed.No significant excess observed.The observed HH production cross-section is 4.0 times its Standard Model prediction. The observed (expected) κ_{λ} and κ_{2V} constraints at 95% CL are shown Fig 3.

Conclusion

- Comparing with previous analysis, the new selection procedure increases 5% improvements on observed μ_{HH} , 16% improvement on observed κ_{2V} and 5% reduction on observed κ_{λ} due to larger, less negative values of μ_{HH} .
- These results contains full Run2 dataset. Di-Higgs combination makes a significant gain (49%) on μ_{HH} , and single Higgs brings 6.94% improvements on κ_{λ} . The study provides the most stringent constraints on Higgs selfinteraction.

References

[1] ATLAS Collaboration. Studies of new higgs boson interactions through nonresonant HH production in the $b\bar{b}\gamma\gamma$ final state in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector. https://arxiv.org/abs/2310.12301, 2023.

[2] ATLAS Collaboration. Constraints on the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using pp collisions at $\sqrt{s} = 13$ TeV. page 137745. Physics Letter B, 2023.

2023.11.16-2023.11.20, Shanghai – The 9th China LHC Physics Workshop (@CLHCP)