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Abstract

The 1dentification of jets originating
from quarks or gluons, often referred
to as quark/gluon tagging, plays an
important role 1n various physics anal-
yses at the Large Hadron Collider. In
this analysis, two taggers are studied:
one tagger 1s based on requirements
on the number of inner-detector tracks
associated with the jet, and the other —
combines several jet substructure ob- - - LIEEE
servables using a boosted decision tree. A | DL e il 2
A method 1s established to determine
the quark/gluon fraction in data, by
using quark/gluon-enriched subsamples
defined by the jet pseudorapidity. Dit-
ferences 1n tagging efficiency between
data and simulation are provided for jets
with transverse momentum between 500
GeV and 2 TeV and for multiple tagger
working points.
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Tagger definitions

e The number of tracks (/V;) 1n a jet 1s used to
define a single-variable ¢ /g tagger.

e A brand new tagger based on Boosted Decision

Trees (BDT) 1s built, using the information com- . : :
. . . ‘XJ > CZ} ‘XJ < } [Xj > c3] [Xj < c3]
ing from the jet p, Vi, track width (W), and 4 AW 4 N
: . : =0.2
two-point energy correlation function (Cf ), o @ @
which takes into account the energy distribution <
within the jet. ‘xk > c4] [xk < c4]
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Matrix method

To measure the performance of the ¢/¢g taggers under study, samples containing solely quark-jets or
solely gluon-jets are needed. To extract the shape of ¢/g tagging variables for quark- and gluon-jets
in data, a method that exploits samples with different g/g fractions 1s used, called the matrix method.

In the matrix method, the distribution of a jet variable x for forward jets, pr(x), and for central jets,

pc(x), can be written as :

() = (e see) () »
= F

Here pgy(x) and p(z) are the distributions of the variable x for pure quark- and gluon-jets, respec-
tively, and the matrix F' contains the fractions of quark- or gluon-jets in the samples of jets in the
forward/central region. Such fractions are taken from MC simulation. The matrix method allows the
extraction of pp(x) and pg(x) by the inversion of matrix F.
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The N, -only tagger achieved a gluon-jet rejection rate of approximately 90% at a fixed quark-jet
efficiency (WP) of 50%, while the BDT-tagger slightly outperformed it with a rejection rate of around
93%.
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The scale factors are measured in different jet-pintervals and are found to range from 0.92 to 1.02,
with a total uncertainty of around 20% which increases at higher pp. The main source of uncertainty
comes from the different modelling choices in MC simulation and amounts to approximately 18% for
both taggers.

Conclusion

The performance of NV, - and BDT-taggers for quark- and gluon-initiated jets 1s studied. A matrix
method, incorporating data from quark-enriched and gluon-enriched samples in dijet events (500 GeV
- 2 TeV p1), estimates the tagging variables’ distribution for both jet types. The variables align well
with the MC predictions, showing less than 25% uncertainty across various regions.

The g/ g taggers developed in this study and the measurement of their SFs will benefit various anal-
yses such as SM measurements that rely on the correct identification of jet origins, or new physics
searches by enhancing their sensitivity to the presence of new particles.
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