

R&D of Dark SHINE LYSO Crystal ECAL

Zhiyu Zhao (<u>zhiyuzhao@sjtu.edu.cn</u>) On behalf of Dark SHINE working group

Tsung-Dao Lee Institute, Shanghai Jiao Tong University

Introduction

A large amount of astronomical observations has strongly indicated the existence of dark matter. New physics theories beyond the Standard Model predict candidate particles for DM, with the "Dark Photon" being a prominent candidate. Dark SHINE is an experiment designed to detect the decay of dark photons into invisible lightmass DM particles (LDM). It relies on the Shanghai Hard X-ray Free Electron Laser (SHINE) facility, which is expected to employ an 8 GeV high-frequency single electron beam to collide target. By with а measuring the energy recoiled $e^$ loss of electrons, DarkSHINE detector has excellent sensitivity for detecting dark photons with mass in MeV range.

Unit Tests in Lab

Experiments based on LYSO and SiPM to research their properties.

Crystal Module for Beamtest

LYSO Crystal ECAL for Dark SHINE

The ECAL in Dark SHINE is to precisely measure the energy of recoil electrons. Due to the high-frequency electron beams, the central region of the detector faces a significant level of radiation damage and pileup. And ECAL should also be large enough to contain all of the EM components. We have a homogenous LYSO crystal ECAL design which has excellent energy resolution, high radiation hardness, fast light decay time and high density. LYSO crystal module for beamtest

- $2.5 \times 2.5 \times 4 cm^3$ LYSO&PWO
- Core: LYSO, good radiation hardness
- Outer: PWO, economical, high density

Beamtest of a 4-channel LYSO unit at DESY

- 1~5GeV electron beam
- $2.5 \times 2.5 \times 4/5 cm^3$ LYSO
- HAMAMATSU S14160-3010PS

Summary & Prospect

The LYSO crystal ECAL in Dark SHINE has a very good energy resolution, high radiation hardness, fast decay time and large radiation length. But radiation-resistant SiPMs are needed.
 We have performed many measurements for crystals and SiPMs. The light yield for one unit can be about 100~1400 pe/MeV with different couplings. The crystal response uniformity is good. And we also measured the dynamic range of SiPMs with large pixel densities.
 A LYSO/PWO hybrid crystal module is proposed for system performance validation. And we

Key requirements Radiation hardness: ~10¹³ n_{eq} Large radiation length Fast signal just performed a 4-channel LYSO unit beamtest at DESY.

Reference

[1] R. Diener et al., NIMA 922 (2019) 265-286.
[2] D. Hooper et al., Phys. Rev. D 76, 083012 (2007)
[3] R. Foot, X. G. He, Phys. Lett. B 267, 509 (1991).
[4] J. Chen et al., Sci. China Phys. Mech. Astron. 66, 211062 (2023).

[5] B. Holdom, Phys. Lett. B 166, 196 (1986).
[6] S. Li, doi:10.5281/zenodo.8373963
[7] J. Wan et al, NIMA 1026, 166200 (2022)
[8] Z. T. Zhao et al, Nucl. Sci. Tech. 28, no.8, 117 (2017)
[9] Z. T. Zhao et al, Science Bulletin 61, 117 (2016), 720-727

The 9th China LHC Physics Workshop (CLHCP2023)