

Performance of the Prototype PSI muEDM Entrance Detector Measured with Test Beam Data

WONG Guan Ming, NG Jun Kai, Tianqi HU, Meng LYU, Kim Siang KHAW

Why search for electric dipole moment (EDM)?

EDMs are CPV observables

- Small SM prediction $(d_{\mu} \sim 10^{-38} e \cdot cm)$ [1]
- Background free search for BSM
- Various BSM models predicts enhanced EDM [2, 3]
 - Complementary to LHC searches
 - EDMs are good probes for BSM CPV
- Present landscape of (μ) EDM:

Frozen-spin technique at muEDM

Increase sensitivity by applying a radial E-field, $E_r \approx aBc\beta\gamma^2$

- > Removes g-2 anomalous precession in storage plane
- > EDM inflicts an increasing vertical polarisation

Asymmetry due to EDM measured using up-down scintillators

EDM signal: Detected up/down

 -0.006392 ± 0.004494

PSI π E1 test beam

Full set-up with veto, gate and exit scintillators. The measured typical pulse signals of each sub-detectors allowed several trigger modes for better event characterization.

Detector Performance

Event display of simulation

- Detector performance is studied by reproducing event topologies and relative event rates in MC simulation
- Beam model, detector geometry, and detector optical characteristics are implemented

Detector Optical Characteristics Measured optical distribution in respective telescope channels: Overlaps due to symmetric config Reproduced optical distribution with simulation: Bottom vs Top

Summary

- A prototype entrance detector is developed with plastic scintillators and SiPM
- Detector performance evaluated by reproducing event characteristics in simulation with optical characteristics for the telescope detectors
- Event rates reproduced in simulation are of close agreement with the measured results
- Event selection efficiency is at ~4% efficiency with gate-only trigger but improves significantly with gate-exit coincidence trigger to ~70%

References

- [1] Y. Yamaguchi, et al., Phys. Rev. L125 (2020), 241802
- [2] Y. Shigekami *et al., Phys. Lett.* B **831** (2022 137194
- [3] A. Crivellin, et al., Phys. Rev. D98 (2018) no.11, 113002

Work supported by the National Natural Science Foundation of China (12050410233)

[4] G. W. Bennett, et al., Phys. Rev. D 80 (2009), 052008