Contribution ID: 38 Type: Poster

The electromagnetic decays of X(3823) as the " ψ " _\[\bigsigma(\bigsigm\)\] \(\bigsigm\) state and its radial excited states

Friday, 2 June 2023 18:40 (5 minutes)

We study the electromagnetic (EM) decays of X(3823) as the $\psi_2(1^3D_2)$ state by using the relativistic Bethe-Salpeter method. Our results are $\Gamma[X(3823) \to \chi_{c0}\gamma] = 1.2$ keV, $\Gamma[X(3823) \to \chi_{c1}\gamma] = 265$ keV, $\Gamma[X(3823) \to \chi_{c2}\gamma] = 57$ keV and $\Gamma[X(3823) \to \eta_c\gamma] = 1.3$ keV. The ratio $calB[X(3823) \to \chi_{c2}\gamma]/calB[X(3823) \to \chi_{c1}\gamma] = 0.22$, agrees with the experimental data. Similarly, the EM decay widths of $\psi_2(n^3D_2)$, n=2,3, are predicted, and we find the dominant decays channels are $\psi_2(n^3D_2) \to \chi_{c1}(nP)\gamma$, where n=1,2,3. The wave function include different partial waves, which means the relativistic effects are considered. We also study the contributions of different partial waves.

Primary author: LI, Wei (He Bei University)

Co-authors: WANG, Guo-Li; Mr WANG, Tian Hong

Presenter: LI, Wei (He Bei University)

Session Classification: Poster session and buffer dinner