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Background

The Inflation correlators are useful probes of new heavy
particles and their interactions at the inflation scale. In
particular, heavy particles can leave distinct oscillatory
shapes In various soft limits of n-point Inflation

correlators, known as cosmological collider (CC) signals.

n many CC models, the leading signals appear from 1-

However, massive 1-loop inflation correlators is hard to
compute, and full analytical results had been unavailable
In the literature.

In this work, we obtain for the first time the full analytical
result for a class of 4pt and 3pt correlators with 1-loop
massive scalar exchanges using the techniques of
spectral decomposition in dS.

Methods

1. We define a loop seed integral (LSl) to which the
computation of many 1-loop correlators can be
reduced.

2. We use the 1-loop spectral density in EAS and
analytically continue it to real-time dS. The LS| is then
reduced to a spectral integral over the tree correlator,
weighted by the spectral density (Fig. 1)

Figure 1. Spectral decomposition of T-loop inflation correlator

3. We analysis the pole structures of the spectral
iIntegrand and finish the spectral integral in Fig. 1 by
the residue theorem.

Result
1. The analytical expression of the loop seed Integral
can be divided into four terms according to their
analytical properties in the squeezed limit: a nonlocal
signal, a local signal, a logarithmic tail (vanishes in 4d),
and a background: B
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Result (continued)

2. The full expression for the 4pt correlator is greatly
simplified in the doubly squeezed limit 71 < r2 < 1;

A2 sec(2mip) (1 +i0)I?[S +iv, > + iV

Toe — 3/24-2iD

JINs 5 [+ 4i) (r172) + c.c.,

~ Vi ORI O R )= 3/242iv

T sec(27iv) - —|.—jy, = ,_I,:w’} 21.V~ (7“_1) 4 ee.
4\/E 1—|—w,1+11/,—5—21y o

~ . 1 rq \°/2
_ _9o4|pdS(_5iy _ loo 42 (_1)
jBG [101/ ( 2 ) (47'(')2 Og MR] o

3. In the 4pt function (Fig. 2), the signal dominates over
the background in the single squeezed limit (r;<<1, r,
fixed). In the 3pt, there iIs no parameter space where the
signal dominates over the background (Fig. 3).
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Figure 3 The 1-loop 3pt correlator with mass parameter V.

4. Consistency check:

a) Correct UV divergence: We perform the calculation in
general (d+1)-dim to implement dim. reg. and MS-bar.
The UV divergence is manifestly local and is identical to
flat space result.

b) Large mass limit: We check that the limit of large
iIntermediate mass also reduces to flat-space result.

c) Squeezed limit: The full expression matches a direct
integration in the sgeezed limit.

d) No spurious poles in the folded limit by construction.
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