# Improving Heavy Dirac Neutrino Prospects at Future Hadron Colliders Using Machine Learning

Jie Feng(冯劼) Sun Yat-Sen University (中山大学)

In collaboration with Prof. Hong-Hao Zhang (张宏浩) from SYSU, Prof. Yong-Chao Zhang (张永超) from SEU, Prof. Qi-Shu Yan (晏启树) from UCAS and Dr. Yu-Pan Zeng (曾育盼) from GDOU

TOPAC2023 TDLI, SJTU, Shanghai

arXiv: 2112.15312(JHEP)



## Introduction

#### ➢Neutrino mass

Confirmed by Neutrino Oscillation experiments (Super-Kamiokande, Sudbury, Daya Bay, …)

3 neutrino mass states.

#### >In particle physics

Beyond the Standard Model (SM) description

New physics!



### Introduction

# Seesaw mechanisms provide natural explanations of the tiny neutrino masses.

Type-I : Prof. Tsutomu Yanagida
 Type-II : many others…
 Type-III: Prof. Xiao-Gang He



#### ≻The Yukawa Lagrangian is given by <sup>[1,2]</sup>

 $\begin{aligned} -\mathcal{L}_{Y} &= Y_{\alpha\beta} \overline{L}_{\alpha} \Phi N_{R,\beta} + M_{N,\alpha\beta} \overline{S}_{L,\alpha} N_{R,\beta} + \frac{1}{2} \mu_{S,\alpha\beta} \overline{S}_{L,\alpha} S_{L,\beta}^{C} + \text{H.c.} \\ L_{\alpha} &= (\nu_{\alpha}, \ell_{\alpha})^{\text{T}} & - \text{Standard Model lepton doublet} \\ \Phi & - \text{Standard Model Higgs doublet} \\ S_{L}^{C} &\equiv S_{L}^{\text{T}} C^{-1} & - \text{charge conjugate of } S_{L} \\ M_{N} & - \text{Dirac mass term} \\ \mu_{S} & - \text{Majorana mass term} \end{aligned}$ 

[1] R.N. Mohapatra, PRL 56 (1986) 561[2] R.N. Mohapatra and J.W.F. Valle, PRD 34 (1986) 1642

>In the limit of  $||\mu_S|| \ll ||M_N||$  (with  $||\mu_S|| \equiv \sqrt{tr(x^{\dagger}x)}$ ), the primary signature of heavy neutrinos at the hadron colliders are <sup>[3,4]</sup>:  $pp \rightarrow \ell_{\alpha}^{\pm} N \rightarrow \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp} W^{\pm} \rightarrow \ell_{\alpha}^{\pm} \ell_{\beta}^{\mp} \ell_{\gamma}^{\pm} v$ 

[3] C. Degrande *et al.*, PRD 94 (2016) 053002 (arXiv:1602.06957)
[4] arXiv:1408.0983, 1706.02298

$$\succ \text{The heavy neutrino } N \text{ will decay} \stackrel{[5,6]}{:} \Gamma(N \to \ell^- W^+) = \frac{\alpha_W |V_{\ell N}|^2}{16} \frac{m_N^3}{m_W^2} \left(1 - \frac{m_W^2}{m_N^2}\right)^2 \left(1 + \frac{m_W^2}{m_N^2}\right)$$

$$\Gamma(N \to \nu_{\ell} Z) = \frac{\alpha_W |V_{\ell N}|^2}{32\cos^2 \theta_W} \frac{m_N^3}{m_Z^2} \left(1 - \frac{m_Z^2}{m_N^2}\right)^2 \left(1 + \frac{m_Z^2}{m_N^2}\right)$$

$$\Gamma(N \to \nu_{\ell} \ h) = \frac{\alpha_{W} |v_{\ell N}|^{2}}{32} \frac{m_{N}^{3}}{m_{W}^{2}} \left(1 - \frac{m_{h}^{2}}{m_{N}^{2}}\right)^{2}$$

[5] A. Pilaftsis, Z. Phys. C 55 (1992) 275[6] W. Buchmuller and C. Greub, Nucl. Phys. B 363 (1991) 345

$$\succ \text{The heavy neutrino } N \text{ will decay} \stackrel{[5,6]}{:} \Gamma(N \to \ell^- W^+) = \frac{\alpha_W (V_{\ell N}|^2)}{16} \frac{m_N^3}{m_W^2} \left(1 - \frac{m_W^2}{m_N^2}\right)^2 \left(1 + \frac{m_W^2}{m_N^2}\right)$$

$$\Gamma(N \to \nu_{\ell} Z) = \frac{\alpha_W |V_{\ell N}|^2}{32\cos^2 \theta_W} \frac{m_N^3}{m_Z^2} \left(1 - \frac{m_Z^2}{m_N^2}\right)^2 \left(1 + \frac{m_Z^2}{m_N^2}\right)$$

$$\Gamma(N \to \nu_{\ell} \ h) = \frac{\alpha_{W} |V_{\ell N}|^{2}}{32} \frac{m_{N}^{3}}{m_{W}^{2}} \left(1 - \frac{m_{h}^{2}}{m_{N}^{2}}\right)^{2}$$

[5] A. Pilaftsis, Z. Phys. C 55 (1992) 275[6] W. Buchmuller and C. Greub, Nucl. Phys. B 363 (1991) 345

# Collider analysis – Signal generation

➤The final states of the signature in the detector: electrons, muons, jets, …

>Measurements of each particle in the detector:

 $\triangleright p_T$ -transverse momentum $\triangleright \eta$ -pseudorapidity $\triangleright \phi$ -azimuthal angle



Seometrical acceptance cuts from ATLAS:  $p_T^{\ell, leading} > 20 \text{ GeV}$ 

| $\sqrt{s}$ (TeV) | electron          |          | muon              |          | jet               |          |
|------------------|-------------------|----------|-------------------|----------|-------------------|----------|
|                  | $p_T ~({ m GeV})$ | $ \eta $ | $p_T ~({ m GeV})$ | $ \eta $ | $p_T ~({ m GeV})$ | $ \eta $ |
| 14               | >10               | < 2.47   | >10               | < 2.7    | > 20              | < 4.5    |
| 27               | >10               | < 2.47   | >10               | < 2.7    | > 30              | < 4.5    |
| 100              | >15               | < 2.47   | >15               | < 2.7    | > 45              | < 4.5    |

## Collider analysis – Signal generation

#### Cross sections of trilepton signal process



Cross sections increase with higher center of mass energies.

Cross sections with 2 jets are much smaller than those with 1 jet. It is safe to neglect events with higher jet multiplicity  $n_j \ge 3$ .

### Collider analysis – Signal generation

Assuming either  $|V_{eN}| \neq 0$  or  $|V_{\mu N}| \neq 0$ , in the charge space, the three leptons of an event can be either + - + or - + -. All the resultant trilepton states are

| mixing      | trilepton states | signs $(\pm \mp \pm)$         |  |
|-------------|------------------|-------------------------------|--|
| $V_{-}$     | eee              | $e^{\pm}e^{\mp}e^{\pm}$       |  |
| $v_{eN}$    | $ee\mu$          | $e^{\pm}e^{\mp}\mu^{\pm}$     |  |
| $V_{\mu N}$ | $\mu\mu e$       | $\mu^{\pm}\mu^{\mp}e^{\pm}$   |  |
|             | $\mu\mu\mu$      | $\mu^{\pm}\mu^{\mp}\mu^{\pm}$ |  |

# Collider analysis – background generation

➤The main background:

$$pp \to ZW^\pm \to \ell_1^\pm \ell_2^\mp \ell_3^\pm \nu$$

➢Pre-selection:

➤The total number of energetic charged leptons is exactly 3, i.e. n<sub>e</sub> + n<sub>µ</sub> = 3.
➤The invariant mass of the two leading leptons should be larger than 12 GeV, i.e. m<sub>ℓ<sub>1</sub>ℓ<sub>2</sub></sub> >12GeV.

The number of jets is not larger than 2, i.e.  $n_i \leq 2$ .

The missing transverse momentum  $E_T^{miss} = |-\sum_{v_i} \overrightarrow{p_T}(v_i)|$  is larger than 20 GeV, i.e.  $E_T^{miss} > 20$ GeV.

# Collider analysis – background generation

Cross sections of all possible trilepton final state processes after pre-selections:

| process                    | cross section (fb) |       |  |
|----------------------------|--------------------|-------|--|
| process                    | 0-jet              | 1-jet |  |
| $ZW \to \ell\ell\ell\nu$   | 29.10              | 20.50 |  |
| $\ell\ell\ell u$           | 1.65               | 0.84  |  |
| (off-shell + interference) | 1.00               |       |  |
| $4\ell$                    | 1.56               | 1.25  |  |

The contributions of the off-shell and four-lepton processes to the standard model backgrounds are small. We can just scale the ZW background by 1.1 to take the other two into account.

#### Collider analysis – Feature observables



Variables reconstructed from the 3-lepton measurements.

#### Collider analysis – Feature observables



Variables reconstructed from the 3-lepton measurements.

## Collider analysis – Feature observables

#### $\succ$ Variables with the largest seperation power:



## Collider analysis – Machine Learning (ML)

#### The ML estimator distributions for $m_N = 500$ GeV:



Boosted Decision Tree with Gradient boosting (BDTG)

Multi-Layer Perceptron (MLP)

arXiv: 2112.15312(JHEP)

## Collider analysis – Machine Learning

The signal efficiency and background rejection power:



 $\geq$  BDTG and MLP methods show compatible results.

When the heavy neutrino mass goes to a higher value, the separation becomes better.



## Results

- Sensitivities of the heavy-light neutrino mixing  $|V_{eN}|^2$ (upper) and  $|V_{\mu N}|^2$  (lower) at 95% C.L. .
- ➤ With machine learning methods,  $|V_{lN}|^2$  can be improved up to O(10<sup>-6</sup>) for heavy neutrino mass  $m_N = 100$  GeV and O(10<sup>-4</sup>) for  $m_N = 1$ TeV.

 $\sqrt{s}$ = 14 TeV(3ab<sup>-1</sup>), 27 TeV(15ab<sup>-1</sup>), and 100 TeV(30ab<sup>-1</sup>)

arXiv: 2112.15312(JHEP)

# Summary

- ➢ By using the machine learning methods, we study the sensitivities of heavy pseudo-Dirac neutrino N in the inverse seesaw at the high-energy hadron colliders.
- ➤ We use either the Multi-Layer Perceptron or the Boosted Decision Tree with Gradient Boosting to analyze the kinematic observables and optimize the discrimination of background and signal events.
- ➢ It is found that the reconstructed Z boson mass and heavy neutrino mass play crucial roles in separating the signal from backgrounds.
- The prospects of heavy-light neutrino mixing  $|V_{lN}|^2$  (with  $l = e, \mu$ ) are estimated by using machine learning at the hadron colliders with  $\sqrt{s}=14$ TeV, 27 TeV, and 100 TeV, and it is found that  $|V_{lN}|^2$  can be improved up to  $O(10^{-6})$  for heavy neutrino mass  $m_N = 100$  GeV and  $O(10^{-4})$  for  $m_N = 1$ TeV.

Thank you !