

# 李政道研究所

**SUNG-DAO LEE INSTITUTE** 

The Higgs boson masses and Higgs decays in the B-LSSM with explicit CP violation

Wen-Hui Zhang, Tai-Fu Feng, Hai-Bin Zhang, Jin-Lei Yang

Department of Physics, Hebei University, Baoding, 071002, China

### Introduction

```
We study the B-LSSM where gauge symmetry
group SU(3) \xrightarrow{C} \otimes SU(2) \xrightarrow{L} \otimes U(1)_Y \otimes U(1)_{B-L} is
introduced with B representing baryon number and L
standing for lepton number. Besides, the invariance
```

under  $U(1)_{B-L}$  gauge group imposes the R-parity

conservation which is assumed in the MSSM to avoid

 $\mathcal{L}_V^0$  is the tree-level Lagrangian of the B-LSSM Higgs

potential. Meanwhile, at the tree level, CP-even Higgs

and CP-odd Higgs satisfy the following relation:

$$\begin{split} &\sum_{i=1}^{4} m_{H_i^0}^2 = m_{A_1}^2 + m_{A_2}^2 + m_z^2 + m_{z'}^2 \\ &\prod_{i=1}^{4} m_{H_i^0}^2 = \cos^2 2\beta \cos^2 2\beta' m_z^2 m_{z'}^2 m_{A_1}^2 m_{A_2}^2 \end{split}$$
  
Further,  $\bar{m}_i^2 \ (i = t, b)$  and  $\tilde{m}_{q_k}^2 \ (q_k = t_1, b_1, t_2, b_2)$  denote

Since Goldstone does not mix with the other neutral

field, the (8×8) matrix  $\mathcal{M}_0^2$  reduces to a (6×6) matrix,

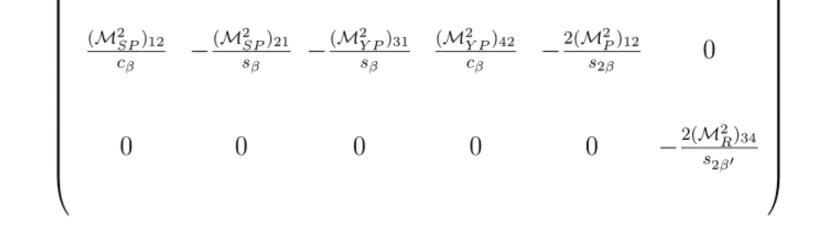
which we denote by  $\mathcal{M}_N^2$ .

```
(\mathcal{M}_{S}^{2})_{11} (\mathcal{M}_{S}^{2})_{12} (\mathcal{M}_{SY}^{2})_{13} (\mathcal{M}_{SY}^{2})_{14} \frac{(\mathcal{M}_{SP}^{2})_{12}}{c_{\beta}}
                                (\mathcal{M}_{S}^{2})_{21} (\mathcal{M}_{S}^{2})_{22} (\mathcal{M}_{SY}^{2})_{23} (\mathcal{M}_{SY}^{2})_{24} -\frac{(\mathcal{M}_{SP}^{2})_{21}}{\frac{8\pi}{3}}
                             (\mathcal{M}_{SY}^2)_{31} \ (\mathcal{M}_{SY}^2)_{32} \ (\mathcal{M}_{Y}^2)_{33} \ (\mathcal{M}_{Y}^2)_{34} \ -\frac{(\mathcal{M}_{YP}^2)_{31}}{s_{\beta}}
\mathcal{M}_N^2 =
                             (\mathcal{M}_{SY}^2)_{41} \ (\mathcal{M}_{SY}^2)_{42} \ (\mathcal{M}_Y^2)_{43} \ (\mathcal{M}_Y^2)_{44} \ \frac{(\mathcal{M}_{YP}^2)_{42}}{c}
```

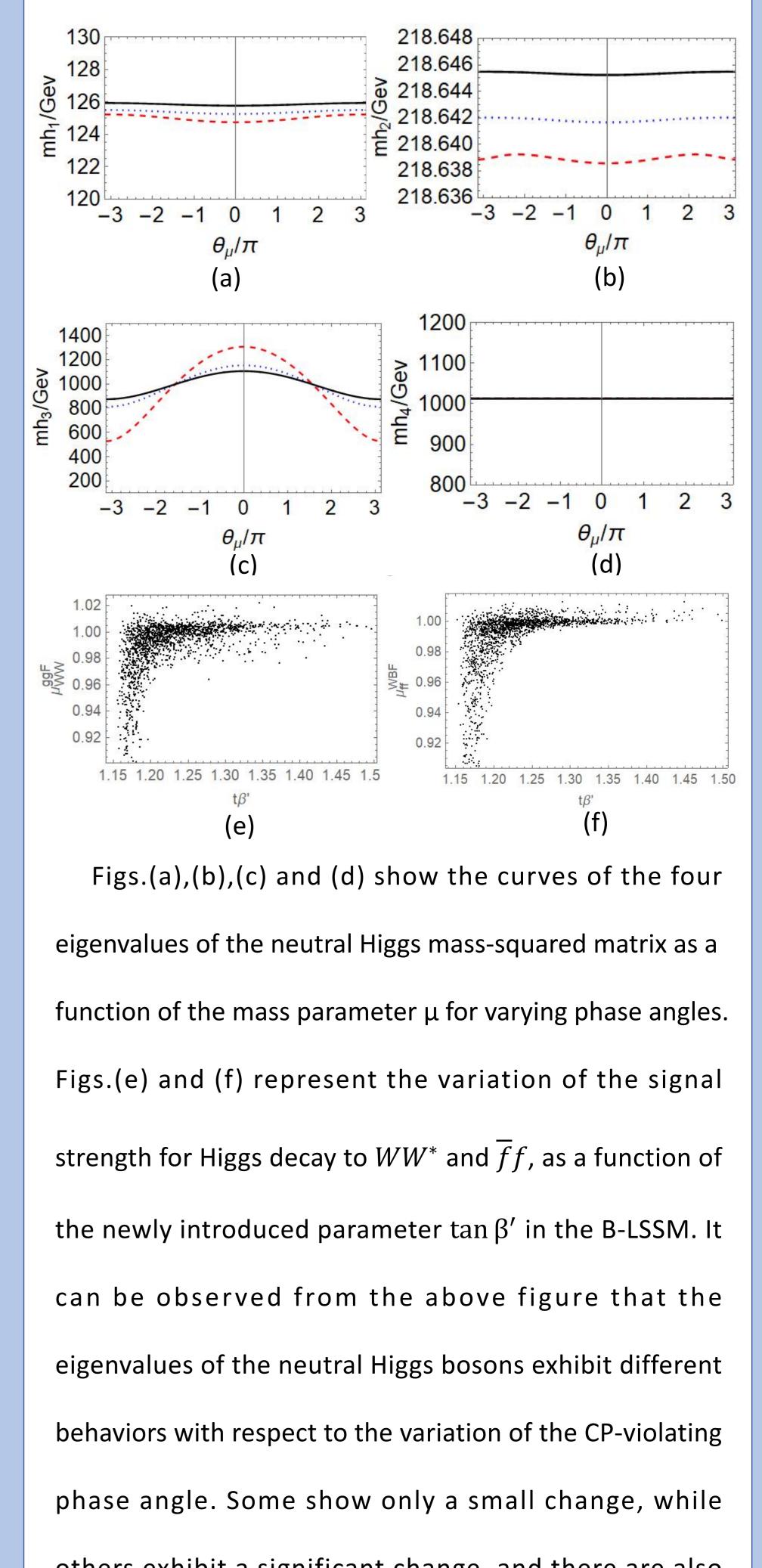
proton decay. In the B-LSSM, right-handed neutrinos can naturally be implemented due to the introduction of the right-handed neutrino superfields, which can realize type I seesaw mechanism, thus provide an elegant solution for the existence and smallness of the light left-handed neutrino masses. Furthermore, additional parameter space in the B-LSSM is released from the LEP, Tevatron and LHC constraints through the additional singlet Higgs state and right-handed(s) neutrinos. It alleviates the hierarchy problem of the MSSM. Other than this, the model can also provide much more DM candidates comparing that in the MSSM.

#### Abstract

the result of taking the vacuum expectative values of the


eigenvalues of the mass matrices of quarks and squarks, respectively.

We now derive the minimization conditions for controlling the B-LSSM one-loop effective potential and determine the Higgs boson mass matrix. The minimization conditions are as follows:


$$T_{\phi_{d(u)}} = \left\langle \frac{\partial \mathcal{L}_{V}}{\partial \phi_{d(u)}} \right\rangle = v_{d(u)} \left[ \frac{1}{8} \left( g_{1}^{2} + g_{2}^{2} + g_{YB}^{2} \right) \left( v_{d(u)}^{2} - v_{u(d)}^{2} \right) + \frac{1}{4} g_{B} g_{YB} \left( v_{\eta(\bar{\eta})}^{2} - v_{\bar{\eta}(\eta)}^{2} \right) \right. \\ \left. + \left( m_{H_{d(u)}}^{2} + |\mu|^{2} \right) \right] - v_{u(d)} \Re \left( B_{\mu} e^{i\xi_{1}} \right) - \frac{3}{16\pi^{2}} \sum_{q=t,b} \left[ \sum_{k=1,2} 2 \left\langle \frac{\partial \bar{m}_{q}^{2}}{\partial \phi_{d(u)}} \right\rangle m_{q}^{2} \right. \\ \left. \times \left( \ln \frac{m_{q}^{2}}{\Lambda^{2}} - 1 \right) - \left\langle \frac{\partial \tilde{m}_{q_{k}}^{2}}{\partial \phi_{d(u)}} \right\rangle m_{\tilde{q}_{k}}^{2} \left( \ln \frac{m_{\tilde{q}_{k}}^{2}}{\Lambda^{2}} - 1 \right) \right] \right]$$

 $T_{\phi_{\eta(\bar{\eta})}} = \left\langle \frac{\partial \mathcal{L}_{V}}{\partial \phi_{\eta(\bar{\eta})}} \right\rangle = v_{\eta(\bar{\eta})} \Big[ \frac{1}{2} g_{B}^{2} \Big( v_{\eta(\bar{\eta})}^{2} - v_{\bar{\eta}(\eta)}^{2} \Big) + \frac{1}{4} g_{B} g_{YB} \Big( v_{d(u)}^{2} - v_{u(d)}^{2} \Big) + \Big( m_{\eta(\bar{\eta})}^{2} + |\mu_{\eta}|^{2} \Big) \Big] \\ - v_{\bar{\eta}(\eta)} \Re \Big( B_{\eta} e^{i\xi_{2}} \Big) - \frac{3}{16\pi^{2}} \sum_{q=t,b} \Big[ \sum_{k=1,2} 2 \left\langle \frac{\partial \bar{m}_{q}^{2}}{\partial \phi_{\eta(\bar{\eta})}} \right\rangle m_{q}^{2} \Big( \ln \frac{m_{q}^{2}}{\Lambda^{2}} - 1 \Big) \Big]$  $-\left\langle \frac{\partial \tilde{m}_{q_k}^2}{\partial \phi_{n(\bar{n})}} \right\rangle m_{\tilde{q}_k}^2 \left( \ln \frac{m_{\tilde{q}_k}^2}{\Lambda^2} - 1 \right) \Big]$ 

 $T_{\sigma_{d(u)}} = \left\langle \frac{\partial \mathcal{L}_V}{\partial \sigma_{d(u)}} \right\rangle = -v_{u(d)} \Im \left( B_\mu e^{i\xi_1} \right) + \frac{3}{16\pi^2} \sum_{a=t,b} \sum_{k=1,2} \left\langle \frac{\partial \tilde{m}_{q_k}^2}{\partial \sigma_{d(u)}} \right\rangle m_{\tilde{q}_k}^2 \left( \ln \frac{m_{\tilde{q}_k}^2}{\Lambda^2} - 1 \right)$ 



# **Results and discussion**



We calculate one-loop radiation corretions to the mass matrix of the neutral Higgs bosons in the B-L Supersymmetric Standard Model (B-LSSM) with explicit CP violation. Within the effective potential methods, the masses of the neutral Higgs bosons are calculated at the one-loop level by taking into account the contributions of the following loops of ordinary particles and superparticles: the top quarks, the bottom quarks, the scalar top quarks and the scalar bottom quarks. At the same time, we also calculate the lightest Higgs decays  $h_0 \rightarrow \gamma \gamma$ ,  $h_0 \rightarrow \overline{f} f$ ,  $h_0 \rightarrow VV^* (V = W, Z)$ ,  $h_0 \rightarrow gg$  in the B-LSSM with explicit CP violation.

$$T_{\sigma_{\eta(\bar{\eta})}} = \left\langle \frac{\partial \mathcal{L}_V}{\partial \sigma_{\eta(\bar{\eta})}} \right\rangle = -v_{\bar{\eta}(\eta)} \Im \left( B_{\eta} e^{i\xi_2} \right)$$

where  $\langle \tilde{m}_{q_k}^2 \rangle = m_{\tilde{q}_k}^2$  nd in order to save space, the tadpole derivatives  $\left< \partial \tilde{m}_{q_k}^2 / \partial \phi_{d(u)} \right>$ ,  $\left< \partial \tilde{m}_{q_k}^2 / \partial \phi_{\eta(\bar{\eta})} \right>$ ,  $\left< \partial \bar{m}_q^2 / \partial \phi_{d(u)} \right>$  $\langle \partial \bar{m}_q^2 / \partial \phi_{\eta(\bar{\eta})} \rangle$  and  $\langle \partial \tilde{m}_{q_k}^2 / \partial \sigma_{d(u)} \rangle$  are not feasible to list them

#### all here.

Then, the neutral-Higgs-boson mass matrix takes on the form:

$$\mathcal{M}_0^2 = \begin{pmatrix} \mathcal{M}_S^2 & \mathcal{M}_{SY}^2 & \mathcal{M}_{SP}^2 & \mathcal{M}_{SR}^2 \\ (\mathcal{M}_{SY}^2)^T & \mathcal{M}_Y^2 & \mathcal{M}_{YP}^2 & \mathcal{M}_{YR}^2 \\ \\ (\mathcal{M}_{SP}^2)^T & (\mathcal{M}_{YP}^2)^T & \mathcal{M}_P^2 & \mathcal{M}_{PR}^2 \end{pmatrix}$$

# CP-violating one-loop effective potential

In the *MS* scheme, the one-loop CP-violating effective

potential is determined by

 $-\mathcal{L}_{V} = -\mathcal{L}_{V}^{0} + \frac{3}{32\pi^{2}} \sum_{q=t,b} \left[ \sum_{i=1,2} \tilde{m}_{q_{i}}^{4} \left( \ln \frac{\tilde{m}_{q_{i}}^{2}}{\Lambda^{2}} - \frac{3}{2} \right) - 2\bar{m}_{q}^{4} \left( \ln \frac{\bar{m}_{q}^{2}}{\Lambda^{2}} - \frac{3}{2} \right) \right]$ 

 $(\mathcal{M}_{SR}^2)^T \ (\mathcal{M}_{YR}^2)^T \ (\mathcal{M}_{PR}^2)^T \ \mathcal{M}_R^2$ 

where  $\mathcal{M}_{S}^{2}$ ,  $\mathcal{M}_{SY}^{2}$ ,  $\mathcal{M}_{Y}^{2}$  and  $\mathcal{M}_{P}^{2}$ ,  $\mathcal{M}_{PR}^{2}$ ,  $\mathcal{M}_{R}^{2}$  and  $\mathcal{M}_{SP}^{2}$ ,

 $\mathcal{M}_{SR}^2$ ,  $\mathcal{M}_{YP}^2$ ,  $\mathcal{M}_{YR}^2$  denote the two-by-two matrices of

the scalar, pseudoscalar and scalar-pseudoscalar

squared mass terms of the neutral Higgs bosons,

respectively.

others exhibit a significant change, and there are also

those that remain unchanged.

## Summary

The impact of CP-violating phase angles varies for

Higgs bosons of different masses. The B-LSSM, which

features explicit radiative breaking of CP invariance,

constitutes a highly rich theoretical framework and will

have an impact on the search for dark matter.

For any suggestion : zwh\_0218@163.com