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Introduction m Poynting vector

Axion was originally proposed to solve the Strong
CP problem in QCD [1-2], and can play as cold dark
matter candidate.

The Witten effect [3] implies the existence of close
relationship between axion and magnetic
monopole.

A sound quantization in the presence of magnetic
monopoles, called QEMD [4-6] which leads to new
axion-modified Maxwell equations.

We proposed a new interface haloscopes which
place an interface between two electromagnetic
media with different properties and are desirable to
search for high-mass axionsm, = 0(10) ueV.

Il. QEMD AXION-INDUCED RADIATION AT AN
INTERFACE

We set up a configuration of interface between two
regions | and Il with a parallel static electromagnetic
field B, or E,, the schematic diagram is shown in
figure 1.

The two regions are filled by media with different ¢
or W. There are continuity requirements between
the two different regions. To satisfy continuity
requirements, there is EM propagating waves emit
from interface, one can detect the signal of EM

I. THE MODIFIED MAXWELL EQUATIONS OF AXION
IN QEMD

Under QEMD, we provide expressions for the axion-
induced electromagnetic fields and the propagating
waves in different interface setups. We also apply
the Poynting’s theorem to calculate the energy flux
densities and obtain the sensitivity to new axion-
photon couplings for high-mass axions.

The QEMD introduces two four-potentials A* and B*
to describe photon. The corresponding U(1) gauge
group of QEMD is replaced by U(1); x U(1),, whose
conserved charges are electric and magnetic
charges.

Coupling coefficients can be calculated as
__ Ee? Mg,? Deg,

And from the Lagrangian of QEMD ,one can obtain
the modified Maxwell equations
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And the macroscopic form of QEMD Maxwell
equations
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Finally, linear form of Maxwell equations
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Figure 1. case 1

l1l. SOLUTIONS OF EM FIELDS AT INTERFACE
In this paper, we discuss three cases which are
designed to detect signal of each coupling
coefficients .Following are all the setups of different

cases.
Case 1:§0 * O,EO =0, e #F,andu=1

Case Z:EO * O,§O =0, e #F,andu=1

Case 3:E‘>0 * O,§0 =0,u Fu,ande =1

After calculating Poynting vector of each cases, one
can get the signal power Pg;gnq; -

The results of each cases are as followings
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IV. POYNTING VECTOR AT AN INTERFACE
The energy flux density of an EM propagating field
is given by the Poynting’s theorem as
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V. SENSITIVITY OF INTERFACE HALOSCOPES TO
NEW AXION COUPLINGS IN QEMD

Assuming an case with medium Il being vacuum.
Moreover, the EM wave can be boosted with a
series of parallel interfaces. The outgoing wave then
becomes a coherent superposition of the
transmission and reflection at each interface.

The signal power is given by

Psignal = A,BZWS)I/I
Where A is area of disk, [ is boost factor, n is
power efficiency and S} is the Poynting vector emit
from medium to vacuum.
Plug them into SNR’s equation ,one can gain a
sensitivity bounds .In figure 2 , we show expected
sensitivity bounds of couplings.
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Figure 2. The expected sensitivity bounds.

Conclusions

The configuration of interface between two
dielectric regions and a parallel static magnetic
(electric) field can measure g, (8.28) cOupling.

The configuration of interface between two regions
with magnetic material and a parallel static electric
field can measure g_;; coupling.

A reasonable setup of interface haloscopes with
perfect mirror can probe the theoretical
predictions of g,,,, 8,,5 and g5 for 0(100) peV <
m, < 0(100) ueV
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