
HEP ML Lab: An end-to-end framework for signal vs
background analysis in high energy physics

Jing Li, Hao Sun

Dalian University of Technology

15th July, 2023

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 1 / 29

Table of Contents

1 Introduction: why we need an end-to-end framework?

2 Three core parts: generate events, create datasets, apply methods

3 Future: share and cooperate

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 2 / 29

Table of Contents

1 Introduction: why we need an end-to-end framework?

2 Three core parts: generate events, create datasets, apply methods

3 Future: share and cooperate

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 3 / 29

Introduction: why we need an end-to-end framework?

HEP ML Lab (HML) is an end-to-end framework for signal vs background
analysis. It combines the machine learning (ML) techniques with the high
energy physics (HEP) researches.

In a complete study of signal vs background analysis, a lot of details come
into play:

What phase space cuts are applied to the events?

What kind of data processing is performed?

How is such data utilized by different classifiers?

...
Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 4 / 29

Introduction: why we need an end-to-end framework?

Even though physicists describe every step as clearly as possible, it is
inevitable subsequent researchers may face difficulties, or even fail to
reproduce the results:

The exact version of the packages used in the study may be not
available nowadays.

Different implementations of the same model may lead to different
results.

...

The unreliable reproduced results lead to difficulties evaluating the new
proposed physics processes, and thus slow down the progress of lowering
the upper limit of new physics discoveries.

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 5 / 29

Introduction: why we need an end-to-end framework?

That’s why we need an end-to-end framework:

It covers every step of the research processes;

It provides certain assurance for reproducibility;

It facilitates researchers to adopt new methods and compare them
quickly.

So, why do we need the HEP ML Lab? Is it simply another one of such
frameworks?

Let’s now take a moment to review the existing frameworks currently
available. Please note that the following list maybe incomplete due to our
limit knowledge and the comparison we made does not cover highlights of
every framework, which may lead to unfairness.

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 6 / 29

Introduction: why we need an end-to-end framework?

Name Data generation Model training Style

hml ml ✗ ✓ sklearn
weaver ✗ ✓ CLI + config
JetNet ✗ ✗ custom
pd4ml ✗ ✓ modified keras
MLAnalysis ✗ ✓ custom
mapyde ✓ ✗ CLI + config

Data generation refers to obtaining raw data from event generators. While
only the last one is capable of this, others offer quite good support for
existing datasets.

Model training includes providing built-in models and corresponding
training methods. Most of the frameworks offer comprehensive support for
this, despite their different implementations and usage styles.

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 7 / 29

https://github.com/arogozhnikov/hep_ml
https://github.com/hqucms/weaver-core
https://github.com/jet-net/JetNet
https://github.com/erum-data-idt/pd4ml
https://github.com/NBAlexis/MLAnalysis
https://github.com/scipp-atlas/mapyde

Introduction: why we need an end-to-end framework?

As you can see, for the two core components - data and models, there
currently isn’t a framework that completely covers both. This is the
motivation of the HEP ML Lab.

Another point of interest is the data processing that connects these two
parts: how raw event data is processed into inputs that various models can
use. Our framework has also made efforts in this area, enabling researchers
to smoothly obtain results from start to finish.

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 8 / 29

Table of Contents

1 Introduction: why we need an end-to-end framework?

2 Three core parts: generate events, create datasets, apply methods

3 Future: share and cooperate

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 9 / 29

Three core parts: module overview

Modules of HEP ML Lab (HML) are in charge of the three core parts:

Note here ”model” is a quite general term, which can be a physics theory
model, a machine learning model. To avoid confusion, we use ”theories”
to refer to theory models and ”methods” to refer to cuts, trees and neural
networks.

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 10 / 29

Three core parts: data containers

The design concept of the data containers (datasets, models) is to
facilitate users in saving and reading data. We save the parameters used
to instantiate data containers as metadata in YAML format, while the
data itself is saved as files named after the corresponding container,
depending on its format.

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 11 / 29

Three core parts: generate events

Let’s first generate some events. We use the Madgraph5 module to
generate events. The following code snippet shows how to generate 10000
events of pp → ZZ → jjνe ν̄e with the mg5 aMC event generator. We also
generate background events pp → jj/Z for comparison:

>>> from hml.generators import Madgraph5

Welcome to JupyROOT 6.24/02

>>> signal_generator = Madgraph5(

... executable="mg5_aMC",

... processes="p p > z z, z > j j, z > ve ve~",

... output_dir="./data/pp2zz",

... shower="Pythia8",

... detector="Delphes",

... settings={

... "nevents": 10000,

... "iseed": 42,

... "htjmin": 400,

... },

...)

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 12 / 29

Generate events: Madgraph5 API

Madgraph5 Class is a simple wrapper of the mg5 aMC executable.

Initializing a Madgraph5 object is equivalent to running the mg5 aMC

executable with the given parameters.

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 13 / 29

Generate events: launch the generator

The method launch starts the generation immediately. The generator will
monitor the run log and print the progress like this:

>>> signal_generator.launch()

Generating events...

Running Pythia8...

Running Delphes...

Storing files...

Done

>>> background_generator.launch()

...

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 14 / 29

Generate events: check the output

After the generation is finished, the generator will automatically read the
cross section from the log file and the output root file.

>>> sig_run = signal_generator.runs[0]

... bkg_run = background_generator.runs[0]

... print(f"cross section (pb): {sig_run.cross_section}")

... print(f"cross section (pb): {bkg_run.cross_section}")

... print(f"number of events: {sig_run.events.GetEntries()}")

... print(f"number of events: {bkg_run.events.GetEntries()}")

cross section (pb): 0.00077034

cross section (pb): 56849.047629999994

number of events: 10000

number of events: 10000

Here we use PyROOT as the backend to read the root file.

As now we can easily access the raw events data, let’s move on to creating
datasets.

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 15 / 29

Create datasets: represent an event in a proper way

Figure: Jet representations from 1709.04464

An event can be represented in different ways based on its constituent
particles, or it can be saved in different data formats. There are mainly
three representations: Set, Image, and Graph. This time, let’s use Set as
an example for explanation.

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 16 / 29

https://inspirehep.net/literature/1623553

Create datasets: represent an event in a proper way

>>> from hml.generators import MG5Run

>>> from hml.representations import Set

>>> from hml.observables import Pt, M, DeltaR

>>> sig_run = MG5Run("./data/pp2zz/Events/run_01/")

>>> bkg_run = MG5Run("./data/pp2jj/Events/run_01/")

>>> representation = Set([Pt("Jet1"),

... Pt("Jet2"),

... DeltaR("Jet1", "Jet2"),

... M("FatJet1")])

MG5Run is used to link the generated events and other information,
such as cross section, together.

Set is used to represent an event as a set of observables.

Pt, M, DeltaR are observables fetched from particles in the event.

We declare a representation with four observables: the transverse
momentum of the first jet and the second jet, the ∆R between them, and
the mass of the first fat jet.

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 17 / 29

Create datasets: fill the dataset

import numpy as np

data, target = [], []

for event in sig_run.events:

if event.Jet_size >= 2 and event.FatJet_size >= 1: # preselection

representation.from_event(event)

data.append(representation.values)

target.append(1)

Do the same for background events

...

data = np.array(data, dtype=np.float32)

target = np.array(target, dtype=np.int32)

Loop over the events and fill the data and target arrays.

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 18 / 29

Create datasets: save the dataset

from hml.datasets import Dataset

dataset = Dataset(

data,

target,

feature_names=representation.names,

target_names=["pp2jj", "pp2zz"],

description="This is a demo dataset for Z vs QCD jets.",

dataset_dir="./data/z_vs_qcd",

)

dataset.save()

Complement the dataset with other information and save it to disk.

The way we create the dataset is similar to the scikit-learn API, which
is quite straightforward and easy to use.

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 19 / 29

Apply methods: method overview

Currently, three types of methods are supported:

Cuts: hml.methods.cuts

Trees: hml.methods.trees

Networks: hml.methods.networks

from hml.methods import CutAndCount, BoostedDecisionTree, ToyMLP

Users done’t have to remember the exact module names, we create
shortcuts for them. Just import them from hml.methods and use them
directly.

Although the methods are implemented in different ways, they all follow
the Method protocol, which means they all have the same API.

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 20 / 29

Apply methods: Keras style protocol - Method

Method is the minimum wrapper of the original Keras to make it
compatible with other methods.

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 21 / 29

Apply methods: use differnt methods in unified style

>>> from hml.datasets import Dataset

>>> from sklearn.model_selection import train_test_split

>>> from keras.utils import to_categorical

>>> # Load the dataset and split it into train and test sets

>>> dataset = Dataset.load("./data/z_vs_qcd")

>>> x_train, x_test, y_train, y_test = train_test_split(

... dataset.data, dataset.target, test_size=0.2, random_state=42

...)

>>> # Convert the labels to categorical

>>> y_train = to_categorical(y_train, dtype="int32")

>>> y_test = to_categorical(y_test, dtype="int32")

>>> # Show the shape of the training and testing sets

... print("x_train shape:", x_train.shape, "y_train shape:", y_train.shape)

... print("x_test shape:", x_test.shape, "y_test shape:", y_test.shape)

x_train shape: (12943, 4) y_train shape: (12943, 2)

x_test shape: (3236, 4) y_test shape: (3236, 2)

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 22 / 29

Apply methods: monitor training with custom metrics

>>> from hml.methods import CutAndCount, BoostedDecisionTree, ToyMLP

>>> from keras.losses import CategoricalCrossentropy

>>> from keras.metrics import CategoricalAccuracy

>>> from hml.metrics import MaxSignificance, RejectionAtEfficiency

MaxSignificance is a custom metric that calculates the maximum
significance under uniform distributed thresholds.

RejectionAtEfficiency is a custom metric that calculates the
background rejection at a given signal efficiency.

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 23 / 29

Apply methods: train the models

>>> m1 = BoostedDecisionTree(n_estimators=10)

>>> m2 = CutAndCount()

>>> m3 = ToyMLP(input_shape=(x_train.shape[1],))

>>> m1.compile(

... metrics=[

... CategoricalAccuracy(name="acc"),

... MaxSignificance(name="max_sig"),

... RejectionAtEfficiency(name="r50"),

...]

...)

>>> m2.compile(...) # Same as m1

>>> m3.compile(...) # Same as m1

>>> _ = m1.fit(x_train, y_train)

>>> _ = m2.fit(x_train, y_train)

>>> _ = m3.fit(x_train, y_train, epochs=10, batch_size=256, verbose=2)

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 24 / 29

Apply methods: train the models

m1: BoostedDecisionTree

Iter 1/10 - loss: 1.2112 - acc: 0.8960 - max_sig: 72.5789 - r50: 187.9428

Iter 2/10 - loss: 1.0756 - acc: 0.9256 - max_sig: 103.2460 - r50: 158.7088

Iter 3/10 - loss: 0.9628 - acc: 0.9376 - max_sig: 126.6023 - r50: 824.0009

...

m2: CutAndCount

Cut 1/4 - loss: 1.9140 - acc: 0.8812 - max_sig: 66.1910 - r50: 8.5635

Cut 2/4 - loss: 2.1843 - acc: 0.8729 - max_sig: 91.5682 - r50: 16.6093

Cut 3/4 - loss: 3.7870 - acc: 0.8369 - max_sig: 105.4932 - r50: 24.9139

Cut 4/4 - loss: 4.3486 - acc: 0.8102 - max_sig: 115.8835 - r50: 33.2185

m3: ToyMLP

Epoch 1/10

51/51 - 4s - loss: 0.7794 - acc: 0.8726 - max_sig: 66.8790 - r50: 31.8838 - 4s/epoch - 79ms/step

Epoch 2/10

51/51 - 1s - loss: 0.5577 - acc: 0.8940 - max_sig: 69.6916 - r50: 73.6283 - 974ms/epoch - 19ms/step

These training processes can also be obtained as the return value of the
fit method.

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 25 / 29

Apply methods: show the results

>>> from tabulate import tabulate

>>> results1 = m1.evaluate(x_test, y_test)

>>> results2 = m2.evaluate(x_test, y_test)

>>> results3 = m3.evaluate(x_test, y_test)

>>> results = {}

>>> results['name'] = [m1.name, m2.name, m3.name]

>>> for k in results1.keys():

... results[k] = results1[k] + results2[k] + results3[k]

>>> print(tabulate(results, headers="keys", floatfmt=".4f"))

name loss acc max_sig r50

--------------------- ------ ------ --------- --------

boosted_decision_tree 0.2529 0.9615 238.2441 882.6083

cut_and_count 4.3782 0.8011 120.5472 37.4138

toy_mlp 0.1659 0.9475 35.9336 163.9975

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 26 / 29

Table of Contents

1 Introduction: why we need an end-to-end framework?

2 Three core parts: generate events, create datasets, apply methods

3 Future: share and cooperate

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 27 / 29

Future: expectations

From the HEP side, we hope to further use the existing tools of scikit-hep
to enhance the efficiency and robustness of the framework;

From the machine learning community’s perspective, we embrace the API
design of Keras and the open-sharing philosophy of Hugging Face;

By combining both, we aim to make research in the high-energy
community also open, reusable, and reproducible.

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 28 / 29

Future: the next steps

The HEP ML Lab is still under development. Its first version v0.1.0 is just
a scaffold of the framework. v0.2.0 is about to release in the next few
days.

We are currently working on the following features:

More observables;

Image and Graph representations;

More available networks;

CLI support;

...

Please follow and support us.
https://github.com/Star9daisy/hep-ml-lab

https://pypi.org/project/hep-ml-lab

Jing Li, Hao Sun (DLUT) HEP ML Lab 15th July, 2023 29 / 29

https://github.com/Star9daisy/hep-ml-lab
https://pypi.org/project/hep-ml-lab

	Introduction: why we need an end-to-end framework?
	Three core parts: generate events, create datasets, apply methods
	Future: share and cooperate

