

Neutrino Reconstruction in TRIDENT Based on GNN

Cen Mo (莫岑) for the TRIDENT collaboration

Workshop on Computation in Experimental Particle Physics 17 July 2023

Neutrino Telescope

Probe origins of cosmic ray with neutrino.

Juan Antonio Aguilar and Jamie Yang. IceCube/WIPAC

Astrophysical neutrino:

- Small flux $E_{\nu}\Phi_{\nu} < 2 \times 10^{-8} GeV cm^{-2} s^{-2} sr^{-1}$
- Small cross section $\sigma \sim 10^{-33} cm^2$ for $E_{\nu} \sim 10 PeV$
- Use sea water as target $v > \frac{c}{n}$
- Neutral-current interaction $\nu_l + N \rightarrow \nu_l + X$
- Charged-current interaction $\nu_l + N \rightarrow l + X$

TRIDENT

- **TRIDENT**: TRoplcal DEep-sea Neutrino Telescope. <u>arXiv:2207.04519</u>
- To be located in the South China Sea.
- Penrose tiling structure with 2000m radius, 700m height, 3500m deep under sea level.

IceCube

• The largest neutrino telescope.

• Detected astrophysical neutrinos in 2013. <u>Science 342,1242856(2013)</u>

Detection of Neutrino Sources

• Evidence for neutrino emission from the nearby active galaxy NGC 1068 (2022).

• Observation of high-energy neutrinos from the Galactic plane (2023)

Neutrino Events

Size of points: number of photo hits •

 $\nu_{\mu} + N \rightarrow \mu + X$

 $\nu_e + N \to e + X$ or $\nu + N \rightarrow \nu + X$ **Double bang** $\begin{array}{c} \nu_\tau + N \rightarrow \tau + X \\ \& \tau \rightarrow \nu_\tau + X' \end{array}$

Simulation of Neutrino Events

Neutrino event generator

Based on CORSIKA8 (arxiv:2208.14240):

- A preliminary earth model is built.
- Scattering of ν and p is simulated with PYTHIA8.
- Propagation of μ is simulated with PROPOSAL.

Detector simulation

Based on Geant4:

- Simulate the propagation of secondary particles.
- Accelerate Cherenkov photons simulation with OptiX.

Preliminary earth model

Neural Network in Neutrino Telescope

Neutrino telescope:

- Irregular detector geometry
- Sparse signal

Compared GNN and SSCNN (arxiv:1706.01307) performance:

• GNN outperforms SSCNN in terms of angular resolution in track-like events.

Top view of TRIDENT detectors

Use point cloud to represent neutrino events:

- Triggered DOMs \rightarrow Nodes of point cloud
- Spacetime of DOMs \rightarrow Coordinate of nodes, *pos_i*.
- DOM-measured time and charge \rightarrow Features of nodes, x_i .

TridentNet

- TridentNet is built based on EdgeConv block: modified from EdgeConv block used in ParticleNet (arxiv:1902.08570).
- Both graph-level and node-level target can be predicted.

Direction reconstruction

- Input features: location \vec{D}_i , first photon arrival time T_i and number of photo hits n_i
- To make full use of the geometric feature of track-like events, the network is trained to predict \vec{r}_i for each DOM_i.
- Loss function: mean square error (MSE) with weight proportional to n_i : $Loss = \Sigma_i n_i \times \left| \overrightarrow{output}_i - \vec{r}_i \right|^2 / \Sigma_i n_i$
- Linear fit on the predicted \vec{r}_i' then reconstructs \hat{n}_{μ} .

Track-like event display

Direction reconstruction

- Model is trained on events with track length > 500m.
- Median angular error decreases from 1 degree to 0.1 degree as the energy of ν_{μ} increases.

Energy reconstruction

- Same input features as the direction reconstruction.
- Network is trained with MSE loss to predict $\log_{10} E_{\mu}$. Weight $w = \log_{10} E_{\mu} 2.5$ is applied:

$$Loss = w \left(output - \log_{10} E_{\mu} \right)^2$$

• A shift term, b = 0.15 is added to outputs of the model:

Classification of v_{τ} and v_{e}

- Input features:
 - 10 brightest DOMs.
 - Location of DOM_i.
 - Waveform with time length 2000ns.
- Network generates probabilities: $output = (p_0, p_1)$.
- Cross-entropy loss is used as the loss function:

 $Loss = -y_0 \log(p_0) - y_1 \log(p_1)$

Classification of v_{τ} and v_{e}

• Take label of $v_{\tau} = 1$, label of $v_e = 0$:

Cascade Reconstruction

ν_e direction reconstruction

- Input feature of DOM_i:
 - Location of DOM_i .
 - Arrival time of the earliest photon.
 - Number of photons received in time window $(10ns \times i, 10ns \times (i + 1)), i \in \{0, 1...99\}$
- Network is trained to predict \hat{n}_{ν} with MSE loss:

$$Loss = \left| \frac{\overrightarrow{output}}{|output|} - \hat{n}_{\nu} \right|^{2}$$

Cascade Reconstruction

ν_e direction reconstruction

- Network is only trained on v_e events with $E_v = 100 TeV$.
- For different E_{ν} , linear scaling to number of collected photons to cascade energy is applied: $n' = n \times \frac{100TeV}{r}$

Summary and Outlook

- Simulated neutrino events in TRIDENT are represented as point clouds and are reconstructed by TridentNet.
- GNN demonstrates high accuracy in neutrino telescope in tasks:
 - Reconstruction of direction and energy of track-like events.
 - Classification of v_{τ} events and v_e .
 - Direction reconstruction of v_e events.
- Reconstruction of v_{τ} and v_{e} events will be further studied.
- Classification between neutrino events and atmospheric muon events will be investigated.

Thanks for listening!

Backup

Email: mo_cen@sjtu.edu.cn

v_{μ} Vertex Sampling

Effective Area of v_{μ}

Figure 15: Effective areas at event reconstruction level for ν_{μ} track events as a function of primary neutrino energy and zenith angle in TRIDENT. At an energy of ~ 100 TeV, the effective area for up-going events is expected to reach 7×10^2 m². Only events with anglular error less than 6 degree are selected to evaluate the effective area.

arXiv:2207.04519

Significance & Sensitivity

arXiv:2207.04519

Page. 21

Comparison with Likelihood Method

Figure 5: Median angular error of GNN (left) and likelihood method (right) depend on energy of ν_{μ} . The median angle between the reconstructed track and the true direction of μ and ν_{μ} is visualized by the green and red lines, respectively. Color bands exhibits the 68% and 90% quantiles. Black lines are the median angle between direction of μ and ν_{μ} .

Direction reconstruction

- Model is trained on events with track length > 500m.
- Median angular error decreases from 1 degree to 0.1 degree as the energy of ν_{μ} increases.

