

Cen Mo (莫岑) for the TRIDENT collaboration

Workshop on Computation in Experimental Particle Physics 17 July 2023

Page. 1

Neutrino Telescope

Probe origins of cosmic ray with neutrino.

Juan Antonio Aguilar and Jamie Yang. IceCube/WIPAC

Astrophysical neutrino:

- Small flux $E_v \Phi_v < 2 \times 10^{-8}$ GeVcm⁻²s⁻²sr⁻¹
- Small cross section σ ~10⁻³³cm² for E_v ~10PeV
- Use sea water as target

- Neutral-current interaction $\nu_l + N \rightarrow \nu_l + X$
- Charged-current interaction $\nu_l + N \rightarrow l + X$

TRIDENT

- **TRIDENT**: TRoplcal DEep-sea Neutrino Telescope. [arXiv:2207.04519](https://arxiv.org/abs/2207.04519)
- To be located in the South China Sea.
- Penrose tiling structure with 2000m radius, 700m height, 3500m deep under sea level.

hDOM

IceCube

• **The largest neutrino telescope.**

• Detected astrophysical neutrinos in 2013. [Science 342,1242856\(2013\)](https://www.science.org/doi/10.1126/science.1242856)

Detection of Neutrino Sources

• Evidence for neutrino emission from the nearby active galaxy NGC 1068 (2022).

• Observation of high-energy neutrinos from the Galactic plane (2023)

Neutrino Events

• Size of points: number of photo hits

 $\nu_\mu + N \rightarrow \mu + X$

 $v_e + N \rightarrow e + X$ or $\nu + N \rightarrow \nu + X$ $v_{\tau} + N \rightarrow \tau + X$ $\& \tau \rightarrow \nu_{\tau} + X'$

Simulation of Neutrino Events

Neutrino event generator

Based on CORSIKA8 ([arxiv:2208.14240](https://arxiv.org/abs/2208.14240)):

- A preliminary earth model is built.
- Scattering of ν and p is simulated with PYTHIA8.
- Propagation of μ is simulated with PROPOSAL.

Detector simulation

Based on Geant4:

- Simulate the propagation of secondary particles.
- Accelerate Cherenkov photons simulation with OptiX.

Preliminary earth model

Neural Network in Neutrino Telescope

Neutrino telescope:

- Irregular detector geometry
- Sparse signal

Compared GNN and SSCNN ([arxiv:1706.01307\)](https://arxiv.org/abs/1706.01307) performance:

• GNN outperforms SSCNN in terms of angular resolution in track-like events.

Top view of TRIDENT detectors

Use point cloud to represent neutrino events:

- Triggered DOMs \rightarrow Nodes of point cloud
- Spacetime of DOMs \longrightarrow Coordinate of nodes, pos_i .
- DOM-measured time and charge \rightarrow Features of nodes, x_i .

TridentNet

- TridentNet is built based on EdgeConv block: modified from EdgeConv block used in ParticleNet ([arxiv:1902.08570\)](https://arxiv.org/abs/1902.08570).
- Both graph-level and node-level target can be predicted.

Direction reconstruction

- Input features: location D_i , first photon arrival time T_i and number of photo hits n_i
- To make full use of the geometric feature of track-like events, the network is trained to predict \vec{r}_i for each DOM_i.
- Loss function: mean square error (MSE) with weight proportional to n_i : $Loss = \Sigma_i n_i \times |output_i| - \vec{r}_i$ 2 $/\Sigma_i n_i$
- Linear fit on the predicted \vec{r}'_i then reconstructs \hat{n}_{μ} .

Track-like event display

Direction reconstruction

- Model is trained on events with track length $>$ 500m.
- Median angular error decreases from 1 degree to 0.1 degree as the energy of v_{μ} increases.

Energy reconstruction

- Same input features as the direction reconstruction.
- Network is trained with MSE loss to predict $\log_{10} E_{\mu}$. Weight $w = \log_{10} E_{\mu} 2.5$ is applied:

$$
Loss = w\left(output - \log_{10} E_{\mu}\right)^2
$$

• A shift term, $b = 0.15$ is added to outputs of the model:

Classification of v_{τ} and v_e

- Input features:
	- 10 brightest DOMs.
	- Location of DOM_i.
	- Waveform with time length 2000ns.
- Network generates probabilities: *output* = (p_0, p_1) .
- Cross-entropy loss is used as the loss function:

 $Loss = -y_0 \log(p_0) - y_1 \log(p_1)$

Classification of v_τ and v_e

• Take label of $v_\tau = 1$, label of $v_e = 0$:

Cascade Reconstruction

direction reconstruction

- Input feature of DOM_i :
	- Location of DOM_i.
	- Arrival time of the earliest photon.
	- Number of photons received in time window $(10ns \times i, 10ns \times (i + 1)), i \in \{0,1..99\}$
- Network is trained to predict \hat{n}_{ν} with MSE loss:

$$
Loss = \left| \frac{\overrightarrow{output}}{|output|} - \hat{n}_{\nu} \right|^2
$$

Cascade Reconstruction

v_e direction reconstruction

- Network is only trained on v_e events with $E_v = 100 TeV$.
- For different E_v , linear scaling to number of collected photons to cascade energy is applied:

Summary and Outlook

- Simulated neutrino events in TRIDENT are represented as point clouds and are reconstructed by TridentNet.
- GNN demonstrates high accuracy in neutrino telescope in tasks:
	- Reconstruction of direction and energy of track-like events.
	- Classification of v_{τ} events and v_e .
	- Direction reconstruction of v_e events.
- Reconstruction of v_{τ} and v_e events will be further studied.
- Classification between neutrino events and atmospheric muon events will be investigated.

Thanks for listening!

Backup

Email: mo_cen@sjtu.edu.cn

v_{μ} Vertex Sampling

Effective Area of v_{μ}

Figure 15: Effective areas at event reconstruction level for ν_{μ} track events as a function of primary neutrino energy and zenith angle in TRIDENT. At an energy of ~ 100 TeV, the effective area for up-going events is expected to reach 7×10^2 m². Only events with anglular error less than 6 degree are selected to evaluate the effective area.

[arXiv:2207.04519](https://arxiv.org/abs/2207.04519)

Significance & Sensitivity

[arXiv:2207.04519](https://arxiv.org/abs/2207.04519)

Page. 21

Comparison with Likelihood Method

Figure 5: Median angular error of GNN (left) and likelihood method (right) depend on energy of v_μ . The median angle between the reconstructed track and the true direction of μ and ν_{μ} is visualized by the green and red lines, respectively. Color bands exhibits the 68% and 90% quantiles. Black lines are the median angle between direction of μ and v_{μ} .

Direction reconstruction

- Model is trained on events with track length $>$ 500m.
- Median angular error decreases from 1 degree to 0.1 degree as the energy of v_{μ} increases.

