

Features Analysis of Particle Tracks and Sensitivity Estimation in PandaX-III Experiment^{1,2}

Tao Li / 李涛 (on behalf of the PandaX-III collaboration)

Sino-French Institute of Nuclear Engineering and Technology Sun Yat-sen University

July 18, 2023

Tao Li (SYSU, litao73@mail.sysu.edu.cn)

¹Li, T. et al. JHEP **06**, 106 (2021).

Outline

- Introduction
- Signal identification with Kalman filter
- 3 Event vertex z_0 reconstruction with CNN
- Summary

Tao Li (SYSU, litao73@mail.sysu.edu.cn)

Neutrinoless double beta decay

Neutrinoless double beta decay $(0\nu\beta\beta)$

$$_{Z}^{N}A \rightarrow_{Z+2}^{N-2} A + 2\beta^{-}$$

Half-life of $0\nu\beta\beta$

$$T_{1/2}^{0\nu} = (G_{0\nu}|\mathbb{M}^{0\nu}|^2 < m_{\beta\beta} >^2)^{-1}$$

 $\approx 10^{27-28} (\frac{0.01 \text{ eV}}{< m_{\beta\beta} >})^2 \text{ yr}$

Ettore Majorana.

Search for $0\nu\beta\beta$

- Neutrino is Majorana particle;
- Lepton number violation and asymmetry of matter-antimatter;
- Origin of neutrino mass;

$0\nu\beta\beta$ experiment

Experimental sensitivity to the half-life of $0\nu\beta\beta$

$$T_{1/2}^{0\nu} = ln2 \cdot \frac{N_A \epsilon a}{W} \sqrt{\frac{M \cdot t}{b \cdot dE}}$$

 N_A : the Avogadro's number;

 ϵ : the signal detection efficiency in the ROI;

a: the isotopic abundance of the isotope;

W: molar mass of the source:

M: the source mass;

t: the measurement time;

b: the background index;

dE: the detector energy resolution;

Design criteria

- isotope choices;
- Backgrounds control;
- Detector strategies;

Candidate isotopes	Natural abundance(%)	$Q_{\beta\beta}$ (MeV)	
⁴⁸ Ca ⁷⁶ Ge ⁸² Se ¹⁰⁰ Mo	0.187	4.2737	
⁷⁶ Ge	7.8	2.0391	
⁸² Se	9.2	2.9551	
¹⁰⁰ Mo	9.6	3.0350	
¹³⁰ Te	34.5	2.5303	
¹³⁶ Xe	8.9	2.4578	
¹⁵⁰ Nd	5.6	3.3673	

$0\nu\beta\beta$ experiment

Introduction 00000

KamLAND-Zen(¹³⁶Xe)

Xe-LS is contained in a 25 μ m-thick nylon "mini-balloon".

KamLAND-Zen detector $T_{1/2} > 2.3 \times 10^{26} \text{ yr (90 \% C.L.)}.$

$NEXT(^{136}Xe)$

A planned high-pressure gas-phase xenon TPC that employs amplification via electroluminescence.

NEXT detector.

PandaX-III experiment

High-pressure gas-phase TPC

- 3 % FWHM @ $Q_{\beta\beta}$ =2.458 MeV;
- Active volume: 1.6 m in diameter and 1.2 m high;
- 140 kg of enriched xenon gas(1% TMA) in 10 bar;
- Readout: 52 modules of 20 cm × 20 cm (3 mm strips).

- 1 to (or the event vertex z₀) is not directly available due to the loss of scintillation light signal.
- Track features can be extracted more effectively for signal identification.

Motivation

Focus on the track features:

• Signal identification based on Kalman filter: Suppress the background events in ROI $(b \downarrow)$;

• z_0 reconstruction based on CNN: Correct spectrum due to electron lifetime $(dE\downarrow)$;

Sensitivity of $0\nu\beta\beta$ half-life:

$$T_{1/2}^{0\nu} = ln2 \cdot \frac{N_A \epsilon a}{W} \sqrt{\frac{M \cdot t}{b \cdot dE}}$$

- b: the background index;
- dE: the detector energy resolution;

• Finally improvement on experimental sensitivity to the half-life of $0\nu\beta\beta$!

What is the Kalman filter?

An optimal linear estimator through iteration

$$\begin{cases} x_k = Fx_{k-1} + \omega_k & \text{(State equation)} \\ y_k = Hx_k + \delta_k & \text{(Measurement equation)} \end{cases}$$

- Prediction and correction;
- minimum variance estimation;

Kalman filter in a Bayesian formalism (KFBF)

6D Kalman filter model in our method:

Bayesian formula:

The most likely value for both the noise items.

$$[\omega_k, \, \delta_k] = \underset{\omega_i \in \omega, R_j \in \delta}{\operatorname{arg\,max}} (P(\omega_i, \delta_j \,|\, y^k)).$$

Track reconstruction

I: identification of the principle track:

III: Fine reconstruction (KFBF):

II: Rough reconstruction:

 E_{Space} : The energy in a unit volume (57 mm) around the energy-weighted center of the event;

 E_p : The total deposited energy of the principal track.

 N_{Tracks} : The total number of the event track;

 E_{BB} : The deposited energy in Bragg blob with radius 12 mm;

 dE_{dx} : The energy loss per unit travel length.

 \hat{P} : The momenta at the ends of the reconstructed track;

Identification of signal and background

- ϵ_s : the signal efficiency;
- Ξ : the signal significance, $\Xi = \epsilon_s / \sqrt{\epsilon_b}$;

 ϵ_h : the background efficiency;

BDT Cuts						
$^{232}\mathrm{Th}$			238U			
ϵ_s	ϵ_b	Ξ	ϵ_s	ϵ_b	Ξ	
0.34	4.7×10^{-4}	15.7	0.49	2.8×10^{-3}	9.3	
0.35	1.2×10^{-3}	10.1	0.57	4.2×10^{-3}	8.8	
0.39	6.7×10^{-4}	15.1	0.51	3.4×10^{-3}	8.7	
0.50	8.2×10^{-4}	17.5	0.40	1.5×10^{-3}	10.3	
0.32	8.3×10^{-4}	11.1	0.46	4.6×10^{-3}	6.8	
	0.34 0.35 0.39 0.50	$\begin{array}{ccc} 0.34 & 4.7 \times 10^{-4} \\ 0.35 & 1.2 \times 10^{-3} \\ 0.39 & 6.7 \times 10^{-4} \\ 0.50 & 8.2 \times 10^{-4} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	

Estimation of $0\nu\beta\beta$ Sensitivity

The estimation of background level is 152 CPY. After the BDT cut, the background rate is 0.48 CPY. An improvement on sensitivity by a factor of 2.7 (2.4).

Comparation	Overall efficiency	background counts in 5 yr	significance	Sensitivity (90% C.L.)
This work	34.7%	2.4	8.8	$2.7 imes 10^{26} ext{ yr}$
Design target ³	35.0%	25.3	2.8	$9.8 \times 10^{25} \text{ yr}$
Work before ⁴	23.2%	7.6	3.3	$1.1 \times 10^{26} \text{ yr}$

Table: The $0\nu\beta\beta$ half-life sensitivity estimation of PandaX-III based on MC data.

Assuming 1 t Xenon and (3 mm, 1%), the background rate is 0.11 CPY, pushing the search towards background-free regime.

³Chen, X. et al. PandaX-III: Searching for neutrinoless double beta decay with high pressure 136 Xe gas time projection chambers. Science China Physics, Mechanics & Astronomy 60, 1–40 (2017).

⁴Galan, J. et al. Topological background discrimination in the PandaX-III neutrinoless double beta decay experiment. Journal of Physics G: Nuclear and Particle Physics 47, 045108 (2020).

t_0/z_0 loss in PandaX-III

Motivation

- Events near the readout plane and cathode can't be identified (Radon degassing).
- Distortion of energy spectrum due to electron attachment effect; Electron lifetime τ_e :

$$\tau_e = (\eta_a \nu_d)^{-1}; E_0 = E_r * e^{-z_0/\tau_e} = \mathbf{F}(E_r; z_0, \tau_e)$$
(1)

zo in PandaX-III TPC

Spectrum correction from a toyMC assuming τ_e =1200 cm.

Motivation

z_0 is revealed in the degree of trajectory dispersion.

$$\sigma_{L,T}^2 = \sigma_{0L,T}^2 + 2 \cdot D_{L,T} \cdot \mathbf{z_0},\tag{2}$$

The simulated tracks (projection in xz plane) for the same $0\nu\beta\beta$ event with different z_c (red triangles) of 16 cm, 66 cm, and 106 cm.

Network architecture

VGGZ0net: a customized VGG16 model for z_c regression.

- Input: RGB Images consisting of 64×64 pixels (only the principle tracks);
- Label: The Z position of event charge center z_c ;

The Structure of VGGZ0net based on VGG16 classification model.

Results under the $0\nu\beta\beta$ and 232 Th dataset of 1200 cm hypothetical electronic lifetime.

Energy correction:

Results

$$E_c = E_r / e^{-\hat{l}_e/\hat{z}_c} \tag{3}$$

 E_r : Raw energy affected by electron attachment;

 E_c : Energy corrected by VGGZ0net;

 E_0 : Energy of the zero-attachment scenario;

The prediction performance of VGGZ0net model.

The energy spectra of simulated $0\nu\beta\beta$ (Top) and γ from ²³²Th (Bottom) datasets.

Performance on simulated validation dataset

 $\sigma(\Delta z)$: prediction error of VGGT0net;

 $\hat{l}_e, \hat{\tau}_e$: electron lifetime estimation;

 l_e : Setting value of electron lifetime;

l_e (cm)	$\sigma(\Delta z)$ (cm)	\hat{l}_e (cm)	$\hat{ au}_e$ (ms)	Corrected energy resolution at $Q_{\beta\beta}$ (%) FWHM
Infinity	11	- 7	P	3.3
2000	11	2015 ± 55	10.83 ± 0.30	3.4
1800	11	1815 ± 53	9.76 ± 0.28	3.5
1600	11	1614 ± 42	8.68 ± 0.23	3.6
1400	11	1408 ± 33	7.57 ± 0.18	3.7
1200	11	1217 ± 30	6.54 ± 0.16	4.0
1000	11	1008 ± 25	5.42 ± 0.13	4.2
800	11	809 ± 20	4.35 ± 0.11	4.6

Table: The performance of vertex reconstruction and energy correction based on VGGZ0net in different electron lifetime scenarios. The corrected energy resolution at $Q_{\beta\beta}$ is presented.

Results

Validation through experimental data in prototype

Prototype installation:

70

20 30

Summary

The PandaX-III experiment has great advantage to search for $0\nu\beta\beta$ due to its excellent ability of track measurement.

Focusing on the particle track features:

- Improve the sensitivity of PandaX-III experiment in the search for $0\nu\beta\beta$ by nearly 3 times;
- Build a CNN regression model VGGZ0net to reconstruct event vertex:
- Push the search towards background-free regime:

