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BBT-1: 1 Billion Financial Model; Released

. Eight benchmark datasets

. Eleven downstream tasks API
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BBT-2: 12 Billion Model; Training Done; 6 Models Releasing o

. BBT-2-12B-Text : General model ; 70B token trained

. BBT-2-12B-Text+Finance : Finance model

. BBT-2-12B-Text+Code: Coding model

. BBT-2-12B-text+Code-SFT : Instruction fine-tuning model
. BBT-2-12B-Diffusion: Text to Image

BBT-3: 100 Billion Model; Developing; 3 Models to release

. BBT-3-Text+Finance+Code general model: 1000B tokens including general data of CH and EN,
financial data,code data, scientific data
. BBT-3-Science : Training scientific paper data based on general model

. BBT-3-SFT-RLHF : Instruction fine-tuning and teinforcement learning model

Big Bang Transformer Model Progress
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Big Bang Transformer: 70B Large Language Model .) Sopte Symmer
NLU Decoder NLG Decoder Time Series Decoder

Bidirectional Transformer [ ]

Shared Encoder

Unidirectional Transformer

Unidirectional
Transformer
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e GPT Decoder only Architecture
e Unified pretraining: Finance, code, scientific

data, General Chinese, General English



BBT Corpus

20 Years of
Finance,
Economy and

Political news

4T Corpus 1000B Tokens

Github code
Repositories
CSDN Blogs

100 Million
Papers and

books

Zhihu,Weibo,
Wechat, News

Guba,Xueqiu,
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Common Crawl
Reddit

Book Corpus
Wikipedia
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BBT-1B Pretaining: Source prompt .). ’}é‘ 734‘
Source prompt brings large improvement in performance
(Tl FINCQA FINESE FINFE FINNA FINNL FINNSP FINQA FINRE SRR
T5-base 69.34 71.34 72.97 41.31 79.39 83.04 75.43 01.04 67.93
BBT-base 67.49 78.78 60.01 42.25 87.20 89.03 74.76 03.87 71.04
BBT-base- 67.81 78.84 79.85 42.37 87.28 89.13 74.75 04.08 71.76
ss
BBT-large-  73.90 77.65 80.44 45.77 87.44 89.63 79.23 04.68 73.99
ss
BBT-base- 77.75 79.25 78.96 46.47 87.82 90.56 81.76 57.19 74.97

Sp
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BBT-7B: Llama Architecture and Benchmark > %zﬁmmﬁa

Model  ARC HellaSwag  MMLU TruthfulQA
Architecture Modals (25-5) (10-s) (5-5) (MC)(0-5) Aversge R IRe R ST RSN
replica_code_v1_3b 0.00% Not Started 3
glm6b 0.00% Not Started HFHA

moss_moon_003_sft 0.00% Not Started B

256_50000 bbt2_7b_210B 0.00% In Process E

256_100000 bbt2_7b_4198 27.22% 41.83% 23.90% 38.83% 32.95% 1.22% Done &

256_200000 bbt2_7b_838B 29.78% 48.84% 26.14% 38.23% 35.75% 0.61% Done -

102412500 bbt2_7b_2108 26.96% 39.33% 25.87% 39.98% 33.04% 0.00% Done

&

1024_25000 bbt2_7b_4198 30.03% 44.06% 25.91% 39.68% 34.92% 183% Done &

1024_50000 bbt2_7b_8388 30.38% 48.65% 25.56% 38.56% 35.79% 183% Done =

1024_83500 bbt2_7b_14008 32.42% 52.75% 3092% 3759% 38.42% 0.61% Done S
Dowzaosoo [ memyres [ masw | ssw | eow | sespe | sseew | sew | bwe | & |

bbt2_13b_4028 24.32% 33.10% 25.96% 45.35% 3218% 2.44% Done =

bbt2_13b_71 2491% 34.22% 26.01% 42.95% 32.02% Done =




CodeBBT : Text2Code and

* Code Corpus:
*  Github code repositories 50 Millions
= (CSDN blogs 90 Millions
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From Hoptield Network to ChatGPT

Hopfield WORD2V
Network LTl IDININ EC
2014

Seq2Seq || ppenten
2017 2017

BERT
2018
GPT-3 ChatGP
2020 June T

2022
5 022 Nov
2019

Transfer learning: key mechanism for pretraining language models
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Transter Learning: Masked LLanguage Model -

@ Mask LM Ma% LM \ /@ /@AD Start/End Span\
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EE TMN]( [SEP] ][Tok!]u_ [TokM] [CLS] | Tok 1 [TMN][ [SEP] ](Tolﬂ].__ [TOKM]
Masked Sentence A P Masked Sentence B Question P Paragraph
Unlabeled Sentence A and B Pair Question Answer Pair
Pre-training Fine-Tuning

BERT Architecture: Encoder

BERT: Pre-training of d?e?%’rectiona] transformers for language understanding (Devlin et al., 2018).



Pretrain — finetune

Task specific models

$ Toxicity
Commonsense
Sentiment analysis

Topic classification
Translation: En - Fr @ Generation

Summarization

Translation: En = De

SciBERT

S
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Downsides:

[ Need new dataset for each task
[ Need to train model for each task

Each model performs only one
task
® Models don’ t leverage transfer

learning among tasks
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GPT-3: Why is next-word-prediction a big deal?

Zero-shot One-shot Few-shot
Few-shot prompting: ability to e [—
. . Natural Language /:):,;«:'"“"N"
leverage natural language instructions ~ * oot
50 \ .’-_____,_—f’/ = ’
; w0 | / i
53 ¥ / / 8 " Nopom 13B Params

e 1,3B Params

0 10" 10'
Number of Examples in Context (K)

* Random insertion in word (RI) — A random punctuation or space character is inserted between each letter
of a word, and the model must output the original word. Example: s.u!c/c!e.s s i/o/n = succession.

Language models are few-shot learners (Brown et al., 2020).
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Origin of GPT Series 8) | o i

sentations our model learned and how they achieve the ob-
served data cfficiency. The benefit of an L1 penalty in the
low data regime (see Figure 2) is a clue. L1 regulariza-

tion is known to reduce sample complexity when there are
s Negative reviews many irrelevant features (Ng, 2004). This is likely to be the
1000 Positive reviews case for our model since it is trained as a language model
Table 2. IMDB sentiment classification and not as a supervised feature extractor. By inspecting the
relative contnbutions ol features on vanous datasets,
800 discovered a single unit within the mLSTM that directl
Table 2. IMDB sentiment classification Foi e F‘g“”’ el o
£ 600 IMDB reviews (Maas etal., 2011) whlch dhovie's bnmodal
METHOD ERROR g distribution with a clear separation between positive and
negative reviews. In Figure 4 we visualize the activations
400 of this unit on 6 randomly selected reviews from a set of
NB-SVM TRIGRAM (MESNIL ET AL., 2014) 8.13% line estimate of the local sentiment of the review. Fitting
SENTIMENT UNIT (OURS) 7.70% 200 a threshold to this single unit achieves a test accuracy of
SA-LSTM (DAI & LE, 2015) 7.24% 92.30% which outperforms a strong supervised results on
BYTE MLSTM (OURS) 7.12% N the datasel.' the’9l.8’i% OfNB-S.VM tngram (Mesnil et al.,
-4 -1 2
TOPICRNN (DIENG ET AL., 2016) 6.24% value f 94.09% (Miyato et al., 2016). Using the full 4096 unit
VIRTUAL ADV (MIYATO ET AL., 2016) 5.91% resentation achieves 92.88%. This is an improvement of

nly 0.58% over the sentiment unit suggesting that almost
I information the model retains that is relevant to senti-
cnt analysis is represented in the very compact form of a
ingle scalar. Table 2 has a full list of results on the IMDB
atasel.

Figure 3. Histogram of cell activation values for the sentiment
unit on IMDB reviews.

Generating Reviews and Discovering Sentiment (Sutskever et al., 2022).



Emergent Abilities of Large L.anguage Model

Definition of Emergence in  “More
Is Ditferent by Nobel prize-winning
llag}gi)cist Philip Knderson (Anderson,

e Emergence is when quantitative
changes in a system result in
qualitative changes in behavior.

e a focused definition of emergent
abilities of large language models: An
ability is emergent If it is not present
in smaller models but is present in
latrger models.

Emergent abilities of large language models (Wei et al., 2022).

S

—o—LaMDA —»—GPT-3 ——Gopher —&— Chinchilla —&-PalLM --- Random
(A) Mod. arithmetic (B) IPA transliterate (C) Word unscramble (D) Figure of specch
50 50 | 50 50
z 40 " 40 | g 40 & 40
T30 £ 30 | 5 30 5 30
g 2 g g
520 & 20 | E 20 E 20
2 o | 2 g
<10 10 | ‘ Z10 ”* S 10F----1
0 0 0 -S—emen®®_ . 0| B
10'% 10 10%* 10** 10" 10%% 107 10% 10*% 10*° 10 10 10'% 10 10%* 10*
(E) TruthfulQA (F) Grounded mappings (G) Multi-task NLU (H) Word in context
70 70| 70 70
60 60 | 60 60
F 50 & 50 | & 50 & 50| - e - -
740 ;’; 08 7 40 740
£ 30 " A 5 30| £ 30 £ 30
22 a 2| 22 22
10 10 | 10 10
0 0 0 0

ln?{l 102'2 1024 10'.'0 ”)‘.’2 ]02-1 1020 1022 “-'21 ln‘.’!) 1022 l[)‘.'-l

Model scale (training FLOPs)

Figure 2: Eight examples of emergence in the few-shot prompting setting. Each point is a separate model. The
ability to perform a task via few-shot prompting is emergent when a language model achieves random performance
until a certain scale, after which performance significantly increases to well-above random. Note that models
that used more training compute also typically have more parameters—hence, we show an analogous figure with

number of model parameters instead of training FLOPs as the z-axis in Figure 7. A~D: BIG-Bench (2022), 2-shot.
E: Lin et al. (2021) and Rae et al, (2021). F: Patel and Pavlick (2022). G: Hendrycks et al, (2021), Rae et al. (2021),

and Hoffmann et al. (2022). H: Brown et al. (2020), Hoffmann et al, (2022), and Chowdhery et al. (2022) on the
WiC benchmark (Pilehvar and Camacho-Collados, 2019).
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Instructions-based tinetuning

S

(Nggugl language Inferencg\ c S Sentiment T (o A) [§truct to tgxt\ i Transiation b
(7 tasks) (4 tasks) (4 tasks) (4 tasks) (3 tasks) (4 tasks) (8 languages)
(ANLI(R1-R3))( RTE _ J[|(_ CoPA J[|(_ IMDB )||( MRPC )||(ARC (easyichal)) || (CommonGen) || (Paracrawi ENDE )
( cB )( sSNU )||(HellaSwag )|[( Sent140 ) QQP (" NQ )[{( DART )||(Paracrawi ENES)
(. mNu ) wNL )| PieA )| ssT2 ([ pPaws )||( TriviaQA )|[|( E2ENLG )||(Paracraw ENFR)
| &StoryCIoze)J \( Yelp )J ((_sts8 JJ{ B \( WEBNLG )) (WMT-16 EN/CS )
. . . 2 w . i
B Read. comp. w/ Coreference Misc. A Summarization B WMT-16 EN/FI
(5 tasks) commonsense (3 tasks) (7 tasks) (11 tasks)
((Boola )(0BQA)|| (2tasks) DPR (Coan )(TREC )| | (_AESLC ) (Multi-News ) (_SamSum )
: (QuAC )(CoLA )| | C AG News )( Newsroom ) (WikiLinguaEN) | | ( WMT-16 EN/RU )
C DR(?P )(sQuAD)| [ ( CosmosQA )| | ( Winogrande ) o o | e e T
) é ReCoRD )J é WSC )j &Fix Punctuation (NLG)) kC Gigaword )COpin—Abs: Movi(D Y, _ )

Finetuned language models are zero-shot learners (Wei et al., 2021).
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Chain-of-thought prompting

Standard Prompting Chain of Thought Prompting

Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many
tennis balls does he have now? tennis balls does he have now?

The answer is 11.

Q: The cafeteria had 23 apples. If they used 20 to

make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
do they have? make lunch and bought 6 more, how many apples
k J \do they have? j

The

answeris 9.

Chain-of-thought prompting elicits reasoning in large language models (Wei et al., 2022).
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Scaling laws: Mechanism for Emergence

Larger models require fewer samples The optimal model size grows smoothly

to reach the same performance with the loss target and compute budget

Line color inticates
rumbar of paramesars

Test Loss 10
[
o 1o 100
L}
10* Params
Y - Compute-efficient
107 Params training stops far
short of convergence
' s""bqo—«_
10 0o 9
Tokens Processed

Figure 2 We show a series of language model training runs, with models ranging in size from 10° to 10¢
parameters (excluding embeddings).

Scaling laws for neural language models (Kaplan et al., 2020).

7 ——————— '
A2 .
o \} E L= |D/S.4 1 10120 56 \ L=INBE" ,o!.‘) o™
I 391 ap
g ] 364 1.0
§ 331 12
Ll |
101
24
L= (Cref2.3+10%)-00%0
2 - - M r K | OV U ———— . > -
107 1w w10 Wt 10 10* w 1w 10’ 1
Compute Dataset Size Parameters
PF-days, non-embedding 1Okoes non-embedding

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute® used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.



Scaling laws: Can Be Very Predictable

OpenAl codebase next word prediction

Bits per word
60
© * Observed
Prediction
50 * gpt4
o
40
o
Predictable with models of
30 ° up to 10,000x less compute
o
° A
o
20 ° .f N
<
101 T T T T T 1
100p 10n m 100y 0.01 1
Compute

Figure 1. Performance of GPT-4 and smaller models. The metric is final loss on a dataset derived
from our internal codebase. This is a convenient, large dataset of code tokens which is not contained in
the training set. We chose to look at loss because it tends to be less noisy than other measures across
different amounts of training compute. A power law fit to the smaller models (excluding GPT-4) is
shown as the dotted line; this fit accurately predicts GPT-4's final loss. The x-axis is training compute
normalized so that GPT-4 is 1.

GPT-4 technical report (2023).




What Language models learn from next-word-prediction

Grammar
Lexical semantics
World knowledge

Sentiment analysis
Harder sentiment
analysis
Translation

Spatial reasoning

Math question

[thousands (millions?) more]

In my free time, | like to {run, }
| went to the zoo to see giraffes, lions, and {zebras, }
The capital of Denmark is {Copenhagen, }

Movie review: | was engaged and on the edge of my seat the whole time. The

movie was {good, }

Movie review: Overall, the value | got from the two hours watching it was the
sum total of the popcorn and the drink. The movie was {bad, }

The word for “pretty” in Spanish is {bonita, }

[...] Iroh went into the kitchen to make some tea. Standing next to Iroh, Zuko
pondered his destiny. Zuko left the {kitchen, }

First grade arithmetic exam: 3+ 8 + 4 = {15, ' '}
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Symmetry Breaking in Dissipative Systems .;

« " if we are looking at a single level of complexity in this
hierarchy, it 1s via a process of symmetry breaking that the state
of a large system composed of many entities might not follow
the rules of the fundamental laws that the entities themselves
follow. Hence, the appearance of new properties is intimately
linked with the disappearance of the symme¢’* =
be they spatial, temporal, informational, etc

Anderson
* Dissipative System: a thermodynamically

open system far from equilibrium
* Isotropic symmetry is broken
* Interaction exhibit long range correlation

[2] Nicolis G, Prigogine 1. 1977 Selt-organization in nonequilibrium systems: from dissipative structures to order through
fluctuations. New York, NY: Wiley.
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Theory : The Cortex and the Critical Poin S

1st order transitions
(discontinuous

Order
parameter /
Control parameter
2nd order transition g
(continuous ) 0
£
Order
parameter
Critical
point

Temperature

Control parameter

The Cortex and The Critical Point (Johe Beggs) 73



Theory : The Cortex and the Critical Poin *>

| Ising model Scale-free properties
Two possible states: Which snapshot is which temperature?
Subcritical . Supercritical
T I (cold) Critical (hot)
i / i —

| Represent spin

of individual
particles
Power law
f(IE) — A" f(z) = Ax™" is the only function which satisfies
k
v — the exponent J;((;;) = g(k)for any =

The Cortex and The Critical Point (Johe Beggs)

& T
s
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Theory : Statistical Mechanics of LLLM > [
1 P T
Renormalization mechanism for LILM:
1. Control parameter and Order
Parameter ; S5
2. Critical exponents
3. Critical processes: how phase change
happens
stable metastable
0 005 6.'138 :!

Fig.8.4 The phase diagram of Hopfield mode! (adapted from Ref, [3]). Three phases (paramagnetic,
spin glass and retrieval) exist. The paramagnetic phase is separated by a continuous transition to
the spin glass phase (7, line). The phase transition from retrieval phase to spin glass phase on the
Ty is discontinuous. Below 7 line, the retrieval phase becomes globally stable. Below the dash
line (T), the replica-symmetric solution becomes unstable

Statstical Mechanics of Neural Network (Haiping Huang) 55



Al for science discovery

® Elon Musk B1E§
Eliezer Yudkowsky & @ESYud... - 2/]\f5

of Al hype: | could be wrong, but my guess
is that we do "not" get AGl just by scaling
ChatGPT, and that it takes *surprisingly”
long from here. Parents conceiving today
may have a fair chance of their child living
to see kindergarten.

Q 98 11 80 Q 1115 b ¢

Elon Musk @ @elonmusk - 1/)\fJ

To be called AGl, it needs to invent
amazing things or discover deeper physics
— many humans have done so. I’'m not
seeing that potential yet.

Q 500 11 308 Q 3957 A,

. Pouring some cold water on the latest wave

" Nobel Turing
Challenge
. fargetzone

T~

I Al Assistant
for Scientific
Robot Scientist __ Discovery

Adam & Eve 6;,,_;_@;_ =7 ]

Autonomous

Research

Task Coverage & Complexity

The Level of Autonomy

Lab automation

Automation

Fig. 9 A possible path towards the Nobel Turing Challenge. Al
Scientist requires a highly automated and connected laboratory to
be able to design and execute experiments, as well as extensive
access to databases and publication archives to process, extract, and
evaluate current knowledge. Sophisticated laboratory automation is
mandatory. Robot Scientist, Adam & Eve, is highly specialized
automation with a certain level of intelligence for hypothesis
generation and experimental protocol generation. The next step is
to fully automate and connect laboratory equipment with layers of
control for data flow, material flow, and physical control flow.
Numbers of Al assistants shall be installed for each task initially, but
need to be integrated as an integrated and highly autonomous
system. The transition of automated system to autonomous system
will be one of the most challenging part of the initiative.

Nobel Turing Challenge creating the engine for scientific discovery (Hiroaki Kitano)

S
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GPT-4: The Sparks of AGI

GPT-4: Is this real intelligence? Can we discover new science ?

(Including 1tsell ) will certainly be ol 1mmense 1mportance to build real-world applications with G 1-4.

4. An important part of our argumentation is that GPT-4 attains human-level performance on many
tasks. As such, it is natural to ask how well GPT-4 understands humans themselves. We show several
experiments on this question in Section 6, both in terms of understanding humans as well as GPT-4
making itself understandable to humans, i.e., addressing the problem of explainability. We note in
particular that such tasks require a great deal of common sense, which so far has been a well-known
pain point for LLMs [DM15]. In Figure 1.7, we give a first example of how much better GPT-4 is at
common sense questions compared to ChatGPT, and provide some further examples in Appendix A,

5. Throughout the paper we emphasize limitations whenever we found one, but we also dedicate Section 8
to an in-depth analysis of the lack of planning, likely a direct consequence of the autoregressive nature
of GPT-4’s architecture.

6. Finally in Section 9, we discuss the expected societal impact of this early form of AGI, and in Section 10,
we share key challenges, directions, and next steps for the field.

A question that might be lingering on many readers’ mind is whether GPT-4 truly understands all these
concepts, or whether it just became much better than previous models at improvising on the fly, without any
real or deep understandlng We hope that after readlng this papet the questlon should almost flip, and that

Can one reasonably say that a system that passes exams for boftware engineering candidates (Figure 1 5) is
not really intelligent? Perhaps the only real test of understanding is whether one can produce new knowledge,
such as proving new mathematical theorems, a feat that currently remains out of reach for LLMs.

Sparks of Artificial General Intelligence: Early experiments with GP1-4 (Sebastien et al., 2023)
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Fig. 1 Very simplified process of scientific discoveries of iPS and conducting polymer, Search and optimization plays a critical role in the
process of discovery, Yamanaka’s case is interesting because a search was conducted in bloinformatics followed by experimant-driven
optimization that may be well suited for Al Scientist in the future.
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b Scientific Discovery

Discovered knowledge:

An entire hypothesis
space for sclentific

knowledge is infinite
or undefinable (a boundary is not clear)

—_—

Fig.2 A possible space of exploration by Al Scientists. Search space structures for a perfect Information games as represented by the Game
GO and b scientific discovery are illustrated with commonalities and differences. While the search space for the Game of GO is well-defined,
the search space for scientific discovery is open-ended. A practical initial strategy is to augment search space based on current scientific

know

with human-centric Al-Human Hybrid system. An extreme option is to set search space broadly into distant hypothesis spaces

where Al Scientist may discover knowledge that was unlikely to be discovered by the human scientist.

Em-um
omsun L-u

th tree. of hypothesis sets and data to verfy them will be automatically generated and executed.

Fig. 5
Verification of H mc,_

bolh‘ "

sets A and B to be venfied.
obtained from experiments in general. In general, multiple dota sets are required to il various parameters of elements in Hypothesis set
before finally tested i the verification process, This reguires Dt Set 1 for Hypothesis set A, womsmzmarwnww»mmam
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sots that noed o be verfied first and specifies the data sets

required.

Nobel Turing Challenge creating the engine for scientific discovery (Hiroaki Kitano)
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Autonomous Scientitic Research by LIN

Input prompt from user

t

Google T the /?gen ¢ Physical world
Search APl | . : hardware
Web searcher | coocLe ~ BET -4l < experivenT~ | Automation | <+ o

Internet «—}— srowse —* - o - liquid handler
PYTHON DOCUMENTATION - manual experimentation
e ~ . Docs index “

Docker TR : < revievaland _[* Hardware API

contalnes T e Code execution Docs searcher summarization T* documentation

Figure 1. Overview of the system architecture. The Agent is composed of multiple modules that
exchange messages. Some of them have access to APIs, the Internet, and Python interpreter.

Emergent autonomous scientific research capabilities of large language models(Daniil et al., 2023) 29
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Figure 3. Overview of documentation search. A, Prompt-to-(improved OT-2 Python API)-code via ada
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Lab symbolic lab language via supplementation of documentation guide. =,

Figure 4. Robotic quid handler control capabilities and integration with analytical tooks. A Overview
of the Agent's corfiguraton. B-E. Drawing geometrical figures. F. The Agent scives a color identification
problom using UV-\Vis data
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Emergent autonomous scientific research capabilities of large language models(Daniil et al., 2023) 30
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Model The Physical Reasoning Processe:

question g

observation

D ATAY
question \{{i %}%"r,ﬂ\
WG
S e
: AN
* o ‘ - () =x +vt WA\
encoding z'&,w;:‘(‘\%or){7;1‘t|undeCOdmg ARBES encoder £ r decoder D
observations latent representation
a) b)

Figure 1. Learning physical representations. (a) Human learning. A physicist compresses experimental observations
into a simple representation (encoding). When later asked any question about the physical setting, the physicist should be able
to produce a correct answer using only the representation and not the original data. We call the process of producing the answer
from the representation decoding. For example, the observations may be the first few seconds of the trajectory of a particle
moving with constant speed; the representation could be the parameters “speed v” and “initial position zo” and the question
could be “where will the particle be at a later time ¢'?” (b) Neural network structure for SciNet. Observations are
encoded as real parameters fed to an encoder (a feed-forward neural network, see Appendix D), which compresses the data into
a representation (latent representation). The question is also encoded in a number of real parameters, which, together with the
representation, are fed to the decoder network to produce an answer. (The number of neurons depicted is not representative.)

Discovering physical concepts with neural networks (Raban et al., 2020) "
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The latent neurons store physical inform

Heliocentric solar system. In the 16th century,

Copernicus nsed observations of the positions of differ-

ent planets on the night sky (Figure 3b) to hypothesize

that the Sun, and not the Earth, is at the centre of our so-

lar system. This heliocentric view was confirmed by Ke-

pler at the start of the 17th century based on astronomic

data collected by Brahe, showing that the planets move

around the Sun in simple orbits. Here, we show that

'“:;'.‘F"c' 9 . - 2l <\ D o a SciNet similarly uses heliocentrie nngles when forced to

> - -~
5 0, /¢ g e find a representation for which the time evolution of the
5 2 B variables takes u very simple form, a typical requirement
ohservation Gecoder 2 200 for time-dependent. variables in physics,
O Q Ry 3 [ 8 The observations given to ScaVet are angles 0y (to) of
Yo Y ] §
o e S A H -0.7 Mars and 8¢(1,) of the Sun as seen from Earth at a start-
Q; ‘ o ~ v ~ ing time ty (which is varied during training). The time
(@ - w 0 3 2 evolution network is restricted to addition of a constant
v : time % g " (the value of which is learned during training). At each
encoder evolution Mars @ v time step 1, ScaNet is asked to predict the angles as seen
a) b) c) from Earth at the time ¢, using only its representation

r(t:}. Because this question is constant, we do not need
to feed it to the decoder explicitly.

Figure 3. Heliocentric model of the solar system. SciNet is given the angles of the Sun and Mars as seen from Earth at We train SciNet with randomly chosen subsequences of

an initial time ¢y and has to predict these angles for later times. (a) Recurrent version of SciNet for time-dependent weekly (simulated) observations of the angles 8, and 8y
variables. Observations are encoded into a simple representation r(ty) at time fo. Then, the representation is evolved in time within Copernicus' lifetime (3665 observations in total).
to r(t1) and a decoder is used to predict a(t;), and so on. In each (equally spaced) time step, the same time evolution network Eor 0'"L;:':;ﬂﬁ:;"mﬁu':m;El;;rglgm’l:zc‘;mlm
and decoder network are applied. (b) Physical setting. The heliocentric angles ¢ and ¢ar of the Earth and Mars are rescutation and conBirma that SciNet indeed store

observed from the Sun; the angles #s and @y of the Sun and Mars are observed from Earth. All angles are measured relative linear combination of heliocentric angles. We stress
to the fixed star background. (c¢) Representation learned by SciNet. The activations ry 2(to) of the two latent neurons at ::,h“tl‘h’*l' "’L“';'“g "i‘“a °.‘i]ty :’""‘"‘l‘: f;l"’-‘"-‘ "l“;’f’lr"d f'l‘“:
time ty (see Figure 3a) are plotted as a function of the heliocentric angles ¢ and ¢ar. The plots show that the network stores [S'ME“;J:L“O: ot e rmorod sl Sl Ao
and evolves parameters that are linear combinations of the heliocentric angles.

Conclusion. In this work, we have shown that SaNet
can be used to recover physical variables from experi-
mental data in various physical toy settings. The leamnt
representations turned out to be the ones commonly used
in physics textbooks, under the sssumption of uncorre-
lated sampling. In future work we plan to extend our ap-
proach to data where the natural underlying parameters

Discovering physical concepts with neural networks (Raban et al., 2020) .
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sentations our model learned and how they achieve the ob-
served data cfficiency. The benefit of an L1 penalty in the
low data regime (see Figure 2) is a clue. L1 regulariza-

tion is known to reduce sample complexity when there are
s Negative reviews many irrelevant features (Ng, 2004). This is likely to be the
1000 Positive reviews case for our model since it is trained as a language model
Table 2. IMDB sentiment classification and not as a supervised feature extractor. By inspecting the
relative contnbutions ol features on vanous datasets,
800 discovered a single unit within the mLSTM that directl
Table 2. IMDB sentiment classification Foi e F‘g“”’ el o
£ 600 IMDB reviews (Maas etal., 2011) whlch dhovie's bnmodal
METHOD ERROR g distribution with a clear separation between positive and
negative reviews. In Figure 4 we visualize the activations
400 of this unit on 6 randomly selected reviews from a set of
NB-SVM TRIGRAM (MESNIL ET AL., 2014) 8.13% line estimate of the local sentiment of the review. Fitting
SENTIMENT UNIT (OURS) 7.70% 200 a threshold to this single unit achieves a test accuracy of
SA-LSTM (DAI & LE, 2015) 7.24% 92.30% which outperforms a strong supervised results on
BYTE MLSTM (OURS) 7.12% N the datasel.' the’9l.8’i% OfNB-S.VM tngram (Mesnil et al.,
-4 -1 2
TOPICRNN (DIENG ET AL., 2016) 6.24% value f 94.09% (Miyato et al., 2016). Using the full 4096 unit
VIRTUAL ADV (MIYATO ET AL., 2016) 5.91% resentation achieves 92.88%. This is an improvement of

nly 0.58% over the sentiment unit suggesting that almost
I information the model retains that is relevant to senti-
cnt analysis is represented in the very compact form of a
ingle scalar. Table 2 has a full list of results on the IMDB
atasel.

Figure 3. Histogram of cell activation values for the sentiment
unit on IMDB reviews.

Generating Reviews and Discovering Sentiment (Sutskever et al., 2022).



Reasoning Agent: TOT, Planning, Memory

Short-term memory Long-term memory

4 4
|
Calendar () |+ Memory ‘ e
A : !
Calculator() |« V »! Reflection
CodeInterpreter() [« Tools = Agent [ Planning # Self-critics
Search () [« [ v » Chain of thoughts
|
...more - : -#»{ Action »| Subgoal decomposition

hups://lilianweng. github.io/posts/2023-06-23-agent/



Challenges for Science LILM: Tokenization

3.1 Tokenization

Tokenization is an important part of dataset design given the different modalities present. For example, protein
sequences are written in terms of amino acid residues, where character-based tokenization is appropriate. To
achieve the goal of specialized tokenization, we utilize specialized tokens for different modalities:

1. Citations: we wrap citations with special reference tokens [START_REF] and [END_REF].

2. Step-by-Step Reasoning: we wrap step-by-step reasoning with a working memory token <work>,
mimicking an internal working memory context.

3. Mathematics: for mathematical content, with or without LaTeX, we split ASCII operations into
individual characters. Parentheses are treated like digits. The rest of the operations allow for unsplit
repetitions. Operation characters are ! "#8%&’*+,-./: ;<=>7\"_*| and parentheses are () [1{}.

4. Numbers: we split digits into individual tokens. For example 737612.62->7,3,7,6,1,2,.,6,2.

5. SMILES formula: we wrap sequences with [START_SMILES] and [END_SMILES] and apply character-
based tokenization. Similarly we use [START_I_SMILES] and [END_I_SMILES] where isomeric
SMILES is denoted. For example, C(C(=0)0)N — C, (,C, (,=,0,),0,),N.

6. Amino acid sequences: we wrap sequences with [START_AMINO] and [END_AMINO] and apply
character-based tokenization, treating each amino acid character as a single token. For example,
MIRLGAPQTL ->M,I,R,L,G,A,P,Q,T,L.

7. DNA sequences: we also apply a character-based tokenization, treating each nucleotide base as
a token, where the start tokens are [START_DNA] and [END_DNA]. For example, CGGTACCCTC ->
c, G, G, T, A,C,C,C, T, C.

We cover a few of the specialized token approaches below that do not have clear parallels in the literature, in
particular the working memory and citation tokens.

Galactica- A Large Language Model for Science(Lecun et al., 2022).
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Challenges : Time Series Mapping to Concepts
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PINN and LLILM

* PINN: physics-inspired
neural network

* Unified training of PINN
and language model

* Can Language model
understand existing physics
laws and discover new laws
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PINN and LILM
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The literature presents an extension of wave function Ansatze, FermiNet, a neural network based on a representation of the wave function
guided by the quantum mechanical variational principle alone. Without reference to experimental data, FermiNet predicts electronic ground
states in condensed matter without a priori knowledge of the system. []

Cassella G, Sutterud H, Azadi S, et al. Discovering quantum phase transitions with fermionic neural networks[J]. Physical Review Letters,
2023, 130(3): 036401.
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BBT-Science: LLM for Scientific Discoveries S

BBT-Science is trained on
BBT-100B with 100 million z

scientific papers to enable

scientific discoveries on

physics, math, chemistry,

biology, etc

1.

2.

Fast and accurate

knowledge search

LLM to provide new ideas

in the frontier of research
areas
LLM to provide insights

from multidiscipline
perspectives

you are an experimental particle physicist, now you are writing a feasibility report for the design of
electron proton collider of 100 kilometers length submitted to Institute of High Energy Physics, please
elaborate the report as detailed as possible.

Here is a draft feasibility report for the design of a 100 km electron-proton colfider submitted to the Institute of High Energy Physics:
Title: Feasibility Study for a 100 km Electron-Proton Collider

Abstract: This report assesses the feasibility and prowvides a conceptual design for a 100 km circular electron-proton (ep) collider proposed 1o be bullt In China. The ep
collider would collide 15 GeV electrons with 7 TeV protons and provide important new capabilities for studying guantum chromodynamics and searching for new physics
beyond the Standard Model,

Introduction: Electran-proton colliders provide unique capabilities that complement proton-proton and electron-positron colliders, By colliding pointiike electrons with the
composite protons, ep collisions enable new tests of quantum chromodynamics calculations and provide sensilivity to parton distribution functions in the proton, The
proposed 100 km ep colider would be the most powerful ep collider built to date, achieving substantially higher energy and luminosity than existing facilities ke HERA at
DESY.

Accelerator Physics: A circumference of 100 km has been selecled to provide the desired high collision energy while minimizing synchrotron radiation effects for the 15
GaV electron beam. At this circumference, 7 TeV protons can be accelerated without exceeding magnet and RF system limits. The electron ring will use conventional
magnets and RF cavities, while the proton ring will require high-fieid Nb3Sn magnets operating at 1.9 K and megawatt-class crab cavities to achieve the design
luminesity of 10*34 cm-2 s-1. Strong hadron cooling systems will be needed to achieve high proton beam brightness.

Detector Requirements: To take full advantage of the ep coflider's physics potential, specialized detectors are needed. A layered detector with excellent spatial resolution
and particle identification will be required to reconstruct the complex final states resulting from ep coflisions. High precision trackers and calorimeters will be needed to
measure jels and missing energy. The detector will need to handie high data rates from the luminous collisions.

Research Geals: The ep collider will enable world-leading studies of quantum chromodynamics, complementing proton and electron-positron colliders. Key
measurements inciude high-precision tests of parton distribution functions, glucn self-interactions, and spin physics. With its high energy, the ep collider also has
discovery potential for new particies and interactions beyond the Standard Model. Searches will be conducted for leploguarks, dark matier candidates, and other exotic
particles.

Technical Challenges: While no insurmountable physics or engineering challienges are foreseen, buiding a 100 km collider presents significant technical risks that will
require detaifed R&D and prototype testing, Challenges include achieving ultra-high proton beam brightness, constructing dozens of high-field magnets, handling multi-
megawatt beam power, and managing very high data rates from the detactor. Careful staging of technical demonstrations will be crucial before proceeding with full
construction.
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Particle Physics Knowledge Domains
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Training Datasets : Particle Corpus -

Particle Corpus: Total 20B Tokens
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Code Interpreter for Data analysis of Reconstruction $

Hit id, event id, track id, module, layer, detector, initial momentum, initial position, particle id

vohame id_ar id  module id o
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Use code interpreter to establish a generic track classifier: group the recorded measurements or
hits for each event into tracks, sets of hits that belong to the same initial particle. A solution must
uniquely associate each hit to one track.




A Unitfied Data Analysis Layer *
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An Unified Data Analysis Layer by Code Interpreter
for nonstop-higher-dimensions data analytics using unsupervised learning
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Benchmark for Particle LILM >

New Physics Hadronic Physics
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Particle LLM Benchmarks :
Cover all theoretical and experimental particle physics research areas and experiments
Data analysis result integrated with reasoning of language model
Anomalies shown in data analysis within the standard model framework

Gauge by the confidence level of data analysis result
Bring in peer review for quantifying the performance of LLM
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Building the Strongest Reasoning Machine

Framework

High quality training corpus : scientific books, papers, wiki, IPs
Benchmark: for new knowledge and innovation, rather than exams
Reasoning Agent: Chain of Thought to Tree of Thought

Code interpreter for a unitied data analysis layer



BBT Science Corpus : Collect All Human Generated Knowledge

e 2 Million books
e 150+ Million papers
e 100 Million IP

Data source Documents Tokens

Wikipedia 6 million 5 billion
StackExchange 1.6 million 1 billion

Papers Distribution by Subject

LibreText 95,113 185 million
Wikibooks 74,705 110 million
Open Textbooks 647 94 million
MIT OCW 25,640 90 million
Wikiversity 38,138 52 million
ProofWiki 32,389 12 million
Khan Academy 3,075 7 million
Papers with Code 13,430 4 million
ITUPAC Goldbook 6,788 1 million
Total 8 million 7 billion
Data source Documents Tokens
arXiv 2 million 35 billion
PMC 3 million 23 billion
Semantic Scholar 3 million 18 billion
PubMed Abstracts 21 million 5 billion
Semantic Scholar Abstracts 19 million 4 billion
bioRxiv 128,059 1 billion
OSF 54,905 428 million
medRxiv 24,019 176 million
ACL 25,518 150 million
PubAg Abstracts 308,235 105 million
ChemRxiv 7617 67 million

Total

48 million 88 billion

=
h) .

‘) A 73 44

Super Symmetry
Technologies

H Medicine

M chemistry

™ biology
Humanities

M physics

M engineering

H Math

H Ecology

B Computer Science

B Economics

B Geoscience



Push the Boundary of Human Knowledge: 1M Unsolved Problems =
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"  We are building a benchmark dataset consisting of

1 million science, math, technology, engineering unsolved problems
" Computing = Knowledge
" Benchmark by peer reviews

Boundary Dataset:1 Million STEM Unsolved Problems

Scicence Math Engineering
i Manufacturing Subject QA Disturbtion
PovsIcS Number Theory
Computer Science .
Biotech
Chemistry
Algebra Renewable Energy
Biology
: : Aerospace Tech
Electrical Engineering
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Conclusions

* LM for science experiments: search, code and autonomous
experiments

* LLLM for science discoveries: model physical reasoning process
* Challenges: special tokens

o Cﬁnaf_'_enges: time series data to concepts

* Challenges: benchmark Boundary data sets

* BBT-Science: Foundational LLLM model for science discovery
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