First principles determination of bubble wall velocity and LTE approximation.

Benoit Laurent

Based on J. Cline and BL (2204.13120) W.-Y. Ai, BL and J. van de Vis (2303.10171)

SPCS 2023: Phase Transitions, Gravitational Waves, and Colliders Tsung Dao Lee Institute, Shanghai September 23, 2023

< □ > < □ > < □ > < □ > < □ > < □ > = □

Baryogenesis:

- FOPTs offer a mechanism to explain the observed baryon asymmetry of the Universe (e.g. electroweak baryogenesis),
- Baryogenesis requires a departure from equilibrium, which can be provided by the bubble wall.

Cline and Laurent (2108.04249)

Gravitational waves:

- In the main mechanism, the energy in the wall is converted into sound waves which are then dissipated as GWs,
- These GWs could be detected by future space-based experiments such as LISA.

Giese, Konstandin, Schmitz and van de Vis (2010.09744)

▶ Wall velocity: General framework

▶ Total pressure and application to xSM

▶ Local thermal equilibrium approximation

æ

・ロト ・回ト ・ヨト ・ヨト

Wall velocity: General framework

Image: A matrix

A FOPT is triggered by the variation of a scalar field ϕ 's VEV:

$$\phi(x^{\mu}): \phi_1 \longrightarrow \phi_2.$$

This can be described by the **EOM**:

$$\partial^2 \phi + \frac{\partial V_0(\phi)}{\partial \phi} + \sum_i \frac{\partial m_i^2(\phi)}{\partial \phi} \int \frac{d^3 p}{(2\pi)^3 2E_i} f_i(p, x) = 0.$$

æ

.

Image: A math black

A FOPT is triggered by the variation of a scalar field ϕ 's VEV:

$$\phi(x^{\mu}): \phi_1 \longrightarrow \phi_2.$$

This can be described by the **EOM**:

$$\partial^2 \phi + \frac{\partial V_0(\phi)}{\partial \phi} + \sum_i \frac{\partial m_i^2(\phi)}{\partial \phi} \int \frac{d^3 p}{(2\pi)^3 2E_i} f_i(p, x) = 0.$$

The set of f_i is the distribution function of each species in the plasma. They follow the **Boltzmann equations**:

$$\left(p^{\mu}\partial_{\mu} + \frac{1}{2}\partial^{\mu}(m_i^2)\partial_{p_{\mu}}\right)f_i(p, x) = -\mathcal{C}_i[f].$$

To simplify the analysis, f_i is split into a "background" part (common to all species) and an "out-of-equilibrium" part:

$$f_i = f_{bg} + \delta f_i,$$

with

$$f_{bg} \equiv f_{eq} = \left[\exp\left(\frac{1}{T(\mathbf{x})}p_{\mu}u_{pl}^{\mu}(\mathbf{x})\right) \pm 1 \right]^{-1}.$$

 δf_i is assumed to be nonzero only for a few species that undergo a large mass variation (e.g. top quark).

(日) (同) (日) (日)

Fluid equations

The evolution of $T(\mathbf{x})$ and $v_{\rm pl}(\mathbf{x})$ is derived from the conservation of the energy-momentum tensor

$$0 = \partial_{\mu} T^{\mu\nu} = \partial_{\mu} (T^{\mu\nu}_{\phi} + T^{\mu\nu}_{\text{plasma}}),$$

where

$$T^{\mu\nu}_{\phi} = \partial^{\mu}\phi \,\partial^{\nu}\phi - \eta^{\mu\nu} \left[\frac{1}{2}\partial_{\alpha}\phi \,\partial^{\alpha}\phi - V_{0}(\phi)\right],$$

$$T^{\mu\nu}_{\text{plasma}} = \omega u^{\mu}_{\text{pl}}u^{\nu}_{\text{pl}} - p_{T}\eta^{\mu\nu} + \sum_{i}\int \frac{d^{3}p}{(2\pi)^{3}E_{i}}p^{\mu}p^{\nu}\delta f_{i}(\mathbf{x},\mathbf{p}),$$

æ

イロト イヨト イヨト イヨト

Fluid equations

The evolution of $T(\mathbf{x})$ and $v_{\rm pl}(\mathbf{x})$ is derived from the conservation of the energy-momentum tensor

$$0 = \partial_{\mu}T^{\mu\nu} = \partial_{\mu}(T^{\mu\nu}_{\phi} + T^{\mu\nu}_{\text{plasma}}),$$

where

$$T^{\mu\nu}_{\phi} = \partial^{\mu}\phi \,\partial^{\nu}\phi - \eta^{\mu\nu} \left[\frac{1}{2}\partial_{\alpha}\phi \,\partial^{\alpha}\phi - V_{0}(\phi)\right],$$

$$T^{\mu\nu}_{\text{plasma}} = \omega u^{\mu}_{\text{pl}}u^{\nu}_{\text{pl}} - p_{T}\eta^{\mu\nu} + \sum_{i}\int \frac{d^{3}p}{(2\pi)^{3}E_{i}}p^{\mu}p^{\nu}\delta f_{i}(\mathbf{x},\mathbf{p}),$$

In the wall frame, these equations can be integrated directly:

$$T^{30} = c_1(\xi_w)$$
 and $T^{33} = c_2(\xi_w)$,

with $c_{1,2}$ independent of z. These equations can be solved for T and v_{pl} .

(More details in Cline and Laurent 2204.13120)

Benoit Laurent

イロト イヨト イヨト イヨ

æ

Image: A image: A

Image: A math black

Deflagration:

- Subsonic: $\xi_w < c_s$
- $v_{-} = \xi_w$ and $T_{+}^{sw} = T_n$
- Shock wave

 $\xi_{\mathcal{W}}=0.4~(\xi=r/t)$

- (E)

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Supersonic: $\xi_w \ge \xi_J > c_s$

• $v_+ = \xi_w$ and $T_+ = T_n$

Rarefaction wave

Deflagration:

Detonation:

- Subsonic: $\xi_w < c_s$
- $v_- = \xi_w$ and $T_+^{sw} = T_n$
- Shock wave

 $\xi_W = 0.4~(\xi = r/t)$

イロト イポト イヨト イヨト

Deflagration:

- Subsonic: ξ_w < c_s
- $v_- = \xi_w$ and $T_+^{sw} = T_n$
- Shock wave

 $\xi_{w} = 0.4 \ (\xi = r/t)$

Detonation:

0.0175

0.0150

0.0125

0.0100

0.0075

0.0050

0.0025

0.0000

0.6

- Supersonic: $\xi_w \ge \xi_J > c_s$
- $v_+ = \xi_w$ and $T_+ = T_n$
- Rarefaction wave

Hybrid:

- $c_s < \xi_w < \xi_J$
- $v_- = c_s$ and $T^{sw}_+ = T_n$
- Rarefaction and shock waves

 $\xi_w = 0.6$

 $\xi_{W} = 0.8$

0.7

0.8

1

8/17

イロト イヨト イヨト イヨト

Total pressure and application to xSM

Image: A matrix

æ September 23, 2023 10/17

æ

Image: A math

• Most deflagration/hybrid walls are in the range $0.5 \leq \xi_w < \xi_J$ because of the pressure peak at ξ_J ,

September 23, 2023 10 / 17

- Most deflagration/hybrid walls are in the range $0.5 \lesssim \xi_w < \xi_J$ because of the pressure peak at ξ_J ,
- The pressure is maximized at ξ_J , so if there is no deflagration/hybrid solution, the wall runs away (or is stopped at $\gamma_w \gg 1$),

- Most deflagration/hybrid walls are in the range $0.5 \lesssim \xi_w < \xi_J$ because of the pressure peak at ξ_J ,
- The pressure is maximized at ξ_J , so if there is no deflagration/hybrid solution, the wall runs away (or is stopped at $\gamma_w \gg 1$),
- Solutions can be classified in **2 categories**: deflagrations/hybrids $(\xi_w \sim c_s)$ and ultrarelativistic detonations $(\gamma_w \gg 1)$.

Example: Singlet scalar extension

We consider the singlet scalar extension with a Z_2 symmetry:

$$V_0(h,s) = \frac{\mu_h^2}{2}h^2 + \frac{\lambda_h}{4}h^4 + \frac{\mu_s^2}{2}s^2 + \frac{\lambda_s}{4}s^4 + \frac{\lambda_{hs}}{4}h^2s^2$$

æ

メロト メタト メヨト メヨト

Example: Singlet scalar extension

We consider the singlet scalar extension with a Z_2 symmetry:

$$V_0(h,s) = \frac{\mu_h^2}{2}h^2 + \frac{\lambda_h}{4}h^4 + \frac{\mu_s^2}{2}s^2 + \frac{\lambda_s}{4}s^4 + \frac{\lambda_{hs}}{4}h^2s^2.$$

Scan with $\lambda_s = 1$:

- No models below 0.2,
- No models with $\xi_J < \xi_w \ll 1$,
- $\xi_w > 0.5$ for 75% of the models.

Local thermal equilibrium approximation

Image: A matrix

Far away from the wall, the fluid equations become:

$$\Delta \left(\omega \gamma^2 v \right) = \Delta \left(\omega \gamma^2 v^2 + p \right) = 0.$$

æ

メロト メタト メヨト メヨト

Far away from the wall, the fluid equations become:

$$\Delta \left(\omega \gamma^2 v\right) = \Delta \left(\omega \gamma^2 v^2 + p\right) = 0.$$

Now, let's assume $\delta f_i = 0$:

We can contract the divergence of $T^{\mu\nu}$ with u^{ν} to get

$$0 = u_{\nu}\partial_{\mu}T^{\mu\nu} = u^{\nu}\partial_{\nu}\phi \underbrace{\left[\partial^{2}\phi + \frac{\partial V_{T}}{\partial\phi}\right]}_{\text{EOM}=0} + T\partial_{\nu}S^{\nu},$$

with the entropy flux:

$$S^{\nu} = u^{\nu}s = u^{\nu}\frac{w}{T}.$$

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Far away from the wall, the fluid equations become:

$$\Delta \left(\omega \gamma^2 v\right) = \Delta \left(\omega \gamma^2 v^2 + p\right) = 0.$$

Now, let's assume $\delta f_i = 0$:

We can contract the divergence of $T^{\mu\nu}$ with u^{ν} to get

$$0 = u_{\nu}\partial_{\mu}T^{\mu\nu} = u^{\nu}\partial_{\nu}\phi \underbrace{\left[\partial^{2}\phi + \frac{\partial V_{T}}{\partial\phi}\right]}_{\text{EOM}=0} + T\partial_{\nu}S^{\nu},$$

with the entropy flux:

$$S^{\nu} = u^{\nu}s = u^{\nu}\frac{w}{T}.$$

In LTE, entropy is conserved:

$$0 = \partial_{\nu} S^{\nu} \Rightarrow \Delta \left(\gamma v \frac{w}{T} \right) = 0$$

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Far away from the wall, the fluid equations become:

$$\Delta \left(\omega \gamma^2 v\right) = \Delta \left(\omega \gamma^2 v^2 + p\right) = 0.$$

Now, let's assume $\delta f_i = 0$:

We can contract the divergence of $T^{\mu\nu}$ with u^{ν} to get

$$0 = u_{\nu}\partial_{\mu}T^{\mu\nu} = u^{\nu}\partial_{\nu}\phi \underbrace{\left[\partial^{2}\phi + \frac{\partial V_{T}}{\partial\phi}\right]}_{\text{EQM}=0} + T\partial_{\nu}S^{\nu},$$

with the entropy flux:

$$S^{\nu} = u^{\nu}s = u^{\nu}\frac{w}{T}.$$

In LTE, entropy is conserved:

$$0 = \partial_{\nu} S^{\nu} \Rightarrow \Delta \left(\gamma v \frac{w}{T} \right) = 0$$

This new matching equation replaces the EOM!

Benoit Laurent

Results

By fitting to the template model (constant sound speed), ξ_w only depends on 4 quantities:

$$\alpha_n$$
 (strength of PT), $\Psi_n = \frac{\omega_-}{\omega_+}$, $\nu = 1 + 1/c_{s,-}^2$, $\mu = 1 + 1/c_{s,+}^2$

See Ai, Laurent and van de Vis (2303.10171) for a Code snippet to compute ξ_w .

15 / 17

- The wall velocity can be calculated from a set of fluid equations (EOM, Boltzmann equation and conservation of EMT),
- These equations can be significantly simplified with the LTE approximation,
- Using the template model, the fluid equations can be written in a model-independent way which only depends on 4 free parameters,
- Solutions can be classified as deflagrations/hybrids ($\xi_w \sim c_s$) or ultrarelativistic detonations ($\gamma_w \gg 1$),
- For $\Psi_n \lesssim 0.75$, hybrid walls can be arbitrarily strong, so baryogenesis and GW production could be highly efficient.

(日) (同) (日) (日)

Thank you!

æ

・ロト ・回ト ・ヨト ・ヨト