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● Recent pulsar timing array (PTA) collaborations show compelling evidence of stochastic 

gravitational waves (GW) at nHz frequency 

● Data set: NANOGrav (15yr, 67 pulsars), CPTA (3.4yr, 57 pulsars), EPTA (10.3yr, 25 

pulsars) and PPTA (30yr, 18 pulsars) (2306.16213-16216)

● The significance of Hellings-Downs (quadrupolar) correlation from NANOGrav, CPTA and 

EPTA is at 3-4 sigma, while from PPTA is 2 sigma

● Conclusive nHz GW signals? Remains to be seen. More data collection & analyses needed

PTA observations & explanations
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PTA observations & explanations

● Astrophysical explanation

Inspiraling of supermassive black hole binaries (SMBHB)

Cosmic inflation, scalar-induced GW, first-order phase transition (FOPT),
cosmic strings, domain walls, etc.

● Bayesian analysis from NANOGrav: strong evidence of cosmological source against 
standard SMBHB explanation (2306.16213) (not universal, data/model-dependent)

● Cosmological explanations

A true stochastic GW era for cosmologists?  Not decisive yet, but exciting!
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Model-independent fits of FOPT

FOPT at 1-100 MeV temperature is favored to explain the PTA observations.

NANOGrav, 2306.16213 J. Ellis, et al,  2308.08546
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MeV-scale Dark FOPT
MeV-scale FOPT can be realized in an Abelian or non-Abelian dark sector 

Pros 

● DM candidate
● Scale origin of neutrino mass
● Scale origin of electroweak vacuum
● Phase transition
● ...

Why is a dark world interesting?

Cons 

● Free parameters >> Obs.
● Pheno. is described but not predicted
● Ambiguous ways to probe
● See and Hear?
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A minimal Higgs-portal dark plasma

Higgs portal

dark species: a dark scalar & a dark gauge boson

Free parameters: 

Unique connection: the Higgs portal; kinetic mixing forbidden  

Standard 
Model

Dark boson 
plasma
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Dark FOPT

Vacuum tree-level dark scalar potential

Finite-T dark scalar potential

Thermal tunneling Symmetric phase 

Bubble nucleation 

Bubble expansion & percolation 
Bubble-bubble collisions
Bubble-plasma collisions

Broken phase 

GW generation 
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How is collider test correlated to GW origin?

Thermalization entropy conserves separately 

Symmetric reheating (minimal) 

If 

EW

QCD

BBNColder dark plasma @ MeV FOPT

Asymmetric reheating Exotic mechanisms required

Standard 
Model

Dark boson 
plasma

&
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How is collider test correlated to GW origin?
If 

A lower decoupling temperature, a hotter dark plasma at nucleation temperature

@ @

Entropy conserves separately after decoupling

Thermalization between the SM and the dark plasma via Higgs portal
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How is collider test correlated to GW origin?

Dark FOPT strength suppressed by quartic temperature ratio

Sound-wave dominated GW peak amplitude (M. Hindmarsh, et al, 1504.03291; C. Caprini,et al, 1512.06239) 

strongly suppressed by A factor of 1/2 leads to a suppression by 
several orders of magnitude!  
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How is collider test correlated to GW origin?

Lower decoupling 
    temperatureStrong GW 

from dark

Larger Higgs 
portal coupling

MeV-scale dark sector

Collider signals

Complementary tests

Dark thermalization
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Most sensitive collider searches
Direct—Higgs invisible decay

(HL) LHC Current LHC bound 
(CMS, 1809.05937)

Future HL-LHC sensitivity
(J. de Blas, et al, 1905.03764)

Lepton colliders
Future sensitivities from CEPC, ILC, FCC-ee,
muon collider (O.Cerri, et al, 1605.00100; Y. Tan, et al, 
2001.05912; C. Potter, et al. 2203.08330; M. Ruhdorfer, et al, 
2303.14202)
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Most sensitive collider searches
Indirect—strength/coupling modifiers

Higgs-dark scalar mixing—universal modifiers

Current LHC bound
(ATLAS, 2207.00092;
  CMS, 2207.00043)

CEPC, ILC, FCC-ee sensitivities
(J. de Blas, et al, 1905.03764)

Direct probe via Higgs invisible decay 
will be the most sensitive channel

Direct Higgs-scalar 
coupling

Indirect SM-scalar coupling
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Benchmark points for GW

Phenomenological treatment: make the predicted GW curves cross at least the 
first 14 frequency bins (most evident for GW) from NANOGrav data

MeV-scale dark FOPT
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Constraints & tests
● Astrophysical bound—energy loss 

against supernova 1987A luminosity
(P. S. B. Dev, et al, 2005.00490)

Nucleon bremsstrahlung

● Cosmic bound
Dark scalar decay @BBN epoch
(M. Hufnagel, et al, 1808.09324)

White regions: phenomenologically viable for nHz GW @NANOGrav
CEPC, ILC, FCC-ee & muon colliders can fully test the white regions.

● Relic dark gauge boson dark matter
(S. Kanemura & LiSP, 2308.16390)
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Summary
● Why consider model-specific FOPT? 

✔ To  shed more light on the cosmological explanations of PTA data, fundamental 
parameters are required to find out the deterministic signals beyond GW

● Can we see and hear the minimal dark?

✔ Hear the dark from GW by MeV-scale FOPT
✔ See the dark from colliders via Higgs invisible decay
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