Collider Tests of Nanohertz Gravitational Waves from Minimal Dark Phase Transition

Shao-Ping Li

Institute of High Energy Physics, Chinese Academy of Sciences

September 24, SPCS 2023 @TDLI, Shanghai

LiSP & Ke-Pan Xie, arXiv: 2307.01086

PTA observations & explanations

- Recent pulsar timing array (PTA) collaborations show compelling evidence of stochastic gravitational waves (GW) at nHz frequency
- Data set: NANOGrav (15yr, 67 pulsars), CPTA (3.4yr, 57 pulsars), EPTA (10.3yr, 25 pulsars) and PPTA (30yr, 18 pulsars) (2306.16213-16216)
- The significance of Hellings-Downs (quadrupolar) correlation from NANOGrav, CPTA and EPTA is at 3-4 sigma, while from PPTA is 2 sigma
- Conclusive nHz GW signals? Remains to be seen. More data collection & analyses needed

PTA observations & explanations

• Astrophysical explanation

Inspiraling of supermassive black hole binaries (SMBHB)

• Cosmological explanations

Cosmic inflation, scalar-induced GW, first-order phase transition (FOPT), cosmic strings, domain walls, etc.

• Bayesian analysis from NANOGrav: *strong evidence* of cosmological source against standard SMBHB explanation (2306.16213) (not universal, data/model-dependent)

A true stochastic GW era for cosmologists? Not decisive yet, but exciting!

Model-independent fits of FOPT

NANOGrav, 2306.16213

Bayesian Estimators, Maximum Posterior Values, and 68% Credible Intervals for the Parameters of the New-physics Models

Parameter	Bayes Estimator		Maximum Posterior		68% Credible Interval								
	NP	NP+SMBHB	NP	NP+SMBHB	NP	NP+SMBHB							
	Cosmological Phase Transition PT-BUBBLE)												
$\log_{10} T_*/\text{GeV}$	-0.76 ± 0.49	-0.71 ± 0.70	-0.90	-0.89	[-1.33, -0.39]	[-1.34, -0.34]							
$\log_{10} \alpha_*$	-0.26 ± 0.47	-0.23 ± 0.52	1*	0.74	[0.03, 1*]	[0.01, 1*]							
$\log_{10} H_*R_*$	-0.42 ± 0.26	-0.47 ± 0.39	0*	-0.06	$[-0.56, 0^*]$	$[-0.58, 0^*]$							
a	2.04 ± 0.48	2.07 ± 0.49	1.97	2.01	[1.49, 2.54]	[1.54, 2.63]							
b	1.97 ± 0.58	1.98 ± 0.58	1*	1*	[1*, 2.32]	[1*, 2.33]							
с	2.03 ± 0.57	2.03 ± 0.57	3*	2.93	[1.69, 3*]	[1.69, 3*]							
$\log_{10} A_{\rm BHB}$		-15.68 ± 0.51		-15.65		[-16.17, -15.21]							
$\gamma_{\rm BHB}$		4.64 ± 0.35		4.65		[4.30, 5.00]							
Cosmological Phase Transition (PT-SOUND)													
log ₁₀ T _* /GeV	-1.84 ± 0.41	-1.56 ± 1.06	-2.00	-1.95	[-2.33, -1.48]	[-2.31, -1.30]							
$\log_{10} \alpha_*$	-0.22 ± 0.44	0.14 ± 0.56	-0.21	-0.15	[-0.37, 1*]	[-0.34, 0.73]							
$\log_{10}H_*R_*$	-0.81 ± 0.36	-0.87 ± 0.51	-1.05	-1.01	[-1.28, -0.57]	[-1.26, -0.45]							
a	3.58 ± 0.47	3.74 ± 0.54	3*	3"	[3*, 3.72]	[3*, 3.98]							
b	2.87 ± 0.57	2.92 ± 0.57	2	2	[2*, 3.17]	[2*, 3.25]							
с	4.16 ± 0.56	4.09 ± 0.57	5	5	[3.87, 5*]	[3.77, 5*]							
$\log_{10} A_{\rm BHB}$		-15.45 ± 0.55		-15.39	•••	[-16.04, -14.94]							
$\gamma_{\rm BHB}$		4.63 ± 0.38	••••	4.67	•••	[4.27, 5.03]							

J. Ellis, et al, 2308.08546

Scenario	Best-fit parameters		
GW-driven SMBH binaries	$p_{\rm BH} = 0.25$		
GW + environment-driven	$p_{\rm BH} = 1$		
SMBH binaries	$\alpha = 3.8$		
	$f_{\rm ref} = 12 \ {\rm nHz}$		
Cosmic (super)strings	$G\mu = 2 \times 10^{-12}$		
(CS)	$p = 6.3 \times 10^{-3}$		
Phase transition	$T_* = 0.24 \text{ GeV}$		
(PT)	$\beta/H = 6.0$		
Domain walls	$T_{\rm ann} = 0.79 { m GeV}$		
Domain walls (DWs)	$T_{\rm ann} = 0.79 {\rm GeV}$ $\alpha_* = 0.026$		
Domain walls (DWs) Scalar-induced GWs	$T_{\rm ann} = 0.79 \text{ GeV}$ $\alpha_* = 0.026$ $k_* = 10^{7.6}/\text{Mpc}$		
Domain walls (DWs) Scalar-induced GWs (SIGWs)	$T_{\rm ann} = 0.79 \text{ GeV}$ $\alpha_* = 0.026$ $k_* = 10^{7.6}/\text{Mpc}$ $A = 10^{-1.1}$		
Domain walls (DWs) Scalar-induced GWs (SIGWs)	$T_{\text{ann}} = 0.79 \text{ GeV}$ $\alpha_* = 0.026$ $k_* = 10^{7.6} / \text{Mpc}$ $A = 10^{-1.1}$ $\Delta = 0.28$		
Domain walls (DWs) Scalar-induced GWs (SIGWs) First-order GWs	$T_{\text{ann}} = 0.79 \text{ GeV}$ $\alpha_* = 0.026$ $k_* = 10^{7.6} / \text{Mpc}$ $A = 10^{-1.1}$ $\Delta = 0.28$ $\log_{10} r = -16.25$		
Domain walls (DWs) Scalar-induced GWs (SIGWs) First-order GWs (FOGWs)	$T_{\text{ann}} = 0.79 \text{ GeV}$ $\alpha_* = 0.026$ $k_* = 10^{7.6} / \text{Mpc}$ $A = 10^{-1.1}$ $\Delta = 0.28$ $\log_{10} r = -16.25$ $n_t = 2.87$		
Domain walls (DWs) Scalar-induced GWs (SIGWs) First-order GWs (FOGWs)	$T_{\text{ann}} = 0.79 \text{ GeV}$ $\alpha_* = 0.026$ $k_* = 10^{7.6} / \text{Mpc}$ $A = 10^{-1.1}$ $\Delta = 0.28$ $\log_{10} r = -16.25$ $n_t = 2.87$ $\log_{10} T_{\text{rh}} = -0.45$		
Domain walls (DWs) Scalar-induced GWs (SIGWs) First-order GWs (FOGWs) "Audible" axions	$T_{\text{ann}} = 0.79 \text{ GeV}$ $\alpha_* = 0.026$ $k_* = 10^{7.6} / \text{Mpc}$ $A = 10^{-1.1}$ $\Delta = 0.28$ $\log_{10} r = -16.25$ $n_t = 2.87$ $\log_{10} T_{\text{rh}} = -0.45$ $m_a = 3.1 \times 10^{-11} \text{ eV}$		

FOPT at 1-100 MeV temperature is favored to explain the PTA observations.

MeV-scale Dark FOPT

MeV-scale FOPT can be realized in an Abelian or non-Abelian dark sector

Why is a dark world interesting?

Pros

- DM candidate
- Scale origin of neutrino mass
- Scale origin of electroweak vacuum
- Phase transition
- ...

Cons

- Free parameters >> Obs.
- Pheno. is described but not predicted
- Ambiguous ways to probe
- See and Hear?

A minimal Higgs-portal dark plasma

 $U(1)_X \otimes Z_2$ dark species: a dark scalar & a dark gauge boson

Unique connection: the Higgs portal; kinetic mixing forbidden $A'_{\mu} \rightarrow -A'_{\mu}, S \rightarrow S^*$

Free parameters: $m_S, m_{A'}, g_X, \lambda_p$

Dark FOPT

Vacuum tree-level dark scalar potential $V_0(S) = -\mu_S^2 |S|^2 + \lambda |S|^4 S = (\varphi + \phi + i\chi)/\sqrt{2}$

How is collider test correlated to GW origin?

How is collider test correlated to GW origin?

If $\lambda_p \neq 0$ Thermalization between the SM and the dark plasma via Higgs portal $\stackrel{H}{\searrow}$ (S) = 0 (S)

Entropy conserves separately after decoupling

$$\frac{T_{\rm D,n}}{T_{\rm SM,n}} = \left(\frac{g_{\rm SM,n}}{g_{\rm SM,dec}}\right)^{1/3} \frac{T_{\rm D,dec}}{T_{\rm SM,dec}}$$

A lower decoupling temperature, a hotter dark plasma at nucleation temperature

How is collider test correlated to GW origin?

Dark FOPT strength suppressed by quartic temperature ratio

$$\alpha \lesssim 1 \approx \frac{\Delta V_{\rm eff}}{\rho_R} \propto \left(\frac{T_{\rm D,n}}{T_{\rm SM,n}}\right)^4 = \left(\frac{g_{\rm SM,n}}{g_{\rm SM,dec}}\right)^{4/3}$$

Sound-wave dominated GW peak amplitude (M. Hindmarsh, et al, 1504.03291; C. Caprini, et al, 1512.06239)

$$\Omega_{\rm sw}^{\rm peak} h^2 = 2.65 \times 10^{-6} (\mathcal{H}\tau_{\rm sw}) \left(\frac{v_w}{\beta/\mathcal{H}}\right) \left(\frac{100}{g_\rho(T_n)}\right)^{1/3} \left(\frac{\kappa_{\rm sw}\alpha}{1+\alpha}\right)^2 \kappa_{\rm sw} \approx \frac{\alpha}{0.73 + 0.083\sqrt{\alpha} + \alpha}$$

strongly suppressed by

$$\left(\frac{T_{\mathrm{D,n}}}{T_{\mathrm{SM,n}}}\right)^8 \sim \left(\frac{T_{\mathrm{D,n}}}{T_{\mathrm{SM,n}}}\right)^{16}$$

A factor of 1/2 leads to a suppression by several orders of magnitude!

Most sensitive collider searches

Most sensitive collider searches

Indirect—strength/coupling modifiers

$$\sigma(i \to h) \mathrm{BR}(h \to f) \equiv \mu_i^f \times (\sigma_{i,\mathrm{SM}} \mathrm{BR}_{h \to f,\mathrm{SM}}) \equiv \frac{(\sigma_{i,\mathrm{SM}} \times \kappa_i^2)(\Gamma_{h \to f,\mathrm{SM}} \times \kappa_f^2)}{\Gamma_{h,\mathrm{SM}} \times \kappa_h^2}$$

Higgs-dark scalar mixing—universal modifiers

$$\mu_i^f = \cos \theta^2 \quad \kappa_i^2 = \cos \theta^2 = \kappa_h^2$$

Current LHC bound $|\theta| \sim 0.1$ (ATLAS, 2207.00092; CMS, 2207.00043) CEPC, ILC, FCC-ee sensitivities $|\theta| \sim 0.06$ (J. de Blas, *et al*, 1905.03764)

Direct probe via Higgs invisible decay will be the most sensitive channel

$$\theta \approx \frac{v_{\rm EW} v_{\phi} \lambda_p}{m_h^2 - m_{\phi}^2} \xrightarrow{\text{Direct Higgs-scalar coupling}} 13$$

Benchmark points for GW

MeV-scale dark FOPT

	m_{ϕ} [MeV]	v_s [MeV]	g_X	$\theta_{\rm max}/10^{-5}$	α	β/H_n	T_n [MeV]
BP1	8.46	42.5	1.01	0.849	0.309	11.2	9.56
BP2	9.16	47.9	0.981	0.955	0.269	8.17	11.2
BP3	23.0	147	0.892	2.93	0.523	12.3	24.3
BP4	31.6	133	1.13	2.66	0.684	16.8	23.9

TABLE I. The chosen BPs with the (m_{ϕ}, v_s, g_X) values. θ_{\max} is the maximal θ allowed by the LHC data, and the subsequent $(\alpha, \beta/H_n, T_n)$ is evaluated at θ_{\max} .

Phenomenological treatment: make the predicted GW curves cross at least the first 14 frequency bins (most evident for GW) from NANOGrav data

Constraints & tests

White regions: phenomenologically viable for nHz GW @NANOGrav CEPC, ILC, FCC-ee & muon colliders can fully test the white regions.

Astrophysical bound—energy loss

against supernova 1987A luminosity (P. S. B. Dev, et al, 2005.00490)

Nucleon bremsstrahlung

 $NN \rightarrow NN\phi$

Cosmic bound

Dark scalar decay @BBN epoch (M. Hufnagel, *et al*, 1808.09324)

$$\phi \to e^+ e^-$$

• Relic dark gauge boson dark matter (S. Kanemura & LiSP, 2308.16390)

$$\left(\frac{\Omega_{\rm DM}h^2}{0.12}\right) \approx 0.33 \left(\frac{0.1}{g_X}\right)^4 \left(\frac{m_{A'}}{100 \ {\rm GeV}}\right)^2$$

Summary

• Why consider model-specific FOPT?

 \subseteq

 \subseteq

- To shed more light on the cosmological explanations of PTA data, fundamental parameters are required to find out the deterministic signals beyond GW
- Can we see and hear the minimal dark?

- Hear the dark from GW by MeV-scale FOPT
- See the dark from colliders via Higgs invisible decay

