H combination at the CMS

Meng Xiao, Zhejiang University

2023.09.24, Tsung-Dao Lee Institute, SPCS 2023

Introduction

- probe BSM
- Combination of all the production and decay channels: get the best precision
- From Run1 to Run2: higher granularity, $\mu => STXS$
- Self-coupling probe through single H production

The Higgs couplings to elementary particles: a tool to examine SM and

Processes in the combination

Nature 607 (2022) 60-68

Production and decay rates

 $\mu^f = \frac{\mathcal{B}^f}{(\mathcal{B}^f)_{\rm SM}}$

$$\mu_i = \frac{\sigma_i}{(\sigma_i)_{\rm SM}}$$

A long journey

~ 2-5% expected at HL-LHC

Vector boson and fermion couplings

Significant improvement in the precision

A bit further

Zoom in interactions between H and other particles

7

H self-coupling

- Directly measured in HH production
- Does it modify the single H xsec?
- Yes, through NLO EW corrections

A universal correction

JHEP 1612,080 (2016) Eur. Phys. J. C77 (2017) 887

On production

On decay

 μ^+

The size of correction

 $V(H) = \frac{1}{2}m_H^2 H^2 + \lambda_3 v H^3 + \frac{1}{4}\lambda_4 H^4 \quad \kappa_\lambda = \lambda_3 / \lambda_3^{SM}$

$$C_{0}\left(1+\kappa_{\lambda}C_{1}\right)$$

Interference between LO and NLO EW Prod and decay dependent

Channels	ggF	VBF	ZH	WH	$t\bar{t}H$	tHj
$C_1(\%)$	0.66	0.63	1.19	1.03	3.52	0.91

$C_1^\Gamma[\%]$	$\gamma\gamma$	ZZ	WW	$far{f}$	gg
on-shell H	0.49	0.83	0.73	0	0.66

The size of correction

$$V(H) = \frac{1}{2}m_{H}^{2}H^{2} + \lambda_{3}vH^{3} + \frac{1}{4}\lambda_{4}H^{4}$$

$$\delta BR_{\lambda_3}(i) = \frac{(\kappa_{\lambda} - 1)(C_1^{\Gamma}(i) - C_1^{\Gamma_{\text{tot}}})}{1 + (\kappa_{\lambda} - 1)C_1^{\Gamma_{\text{tot}}}},$$

Interference between LO and NLO EW Prod and decay dependent

Channels	ggF	VBF	ZH	WH	$t\bar{t}H$	tHj
$C_1(\%)$	0.66	0.63	1.19	1.03	3.52	0.91

	$C_1^\Gamma[\%]$	$\gamma\gamma$	ZZ	WW	$f\bar{f}$	gg
·	on-shell H	0.49	0.83	0.73	0	0.66

Go differential

No differential effect at the decay

Most pronounced differential effects at the VH and ttH production

STXS bins and parameterization

LHCHWG-2022-002

12

An example of STXS measurement from ATLAS

Nature 607 (2022) 52-59

Expect to improve further since some STXS analyses were not included

H vs HH: Less variation, higher xsec

- An ever increasing precision of the H coupling to particles
- Useful to examine both direct and indirect couplings
- Further interpretation could be explored: specific BSM models, EFT..
- Improvements expected at Run3 and HL-LHC

15

Courtesy Grazzini and Kado

An example of STXS measurement

138 fb⁻¹ (13 TeV							
[±1 SD (stat)						
∋ syst)	±1 SD (syst)						
⊕ syst)							
	1	Stat	Syst				
	1.01 ±0.10	±0.07	±0.07				
	1.00_0.06	-0.04	-0.04				
	1.00_0.03	-0.03	-0.01				
	0 90 ^{+0.10}	+0.07	+0.07				
	0.30_0.12	-0.09	-0.08				
	0.91 ±0.07	±0.04	+0.06 -0.05				
	1.11 ^{+0.19} _{-0.21}	+0.18 -0.20	±0.07				
	1 62+0.32	+0.29	+0.12				
	-0.36	-0.34	-0.11				
	0.93 ±0.07	±0.05	+0.06 -0.05				
	1 07+0.05	+0.04	+0.04				
	-0.06	-0.05	-0.03				
	0.07 ±0.05	±0.02	±0.04				
]	0.00+0.06	+0.05	+0.03				
2 P	2.5 3 arame	e ter v	8.5 valu	2 e			

