Non-Abelian kinetic mixing: transfer CP violation with dark photon

Gang Li (李刚)

School of Physics and Astronomy, Sun Yat-sen University, Zhuhai

The 2022 Shanghai Particle Physics and Cosmology Symposium: Phase Transitions, Gravitational Waves, and Colliders (SPCS 2023)

2023年9月23日 1

We want to explain baryon asymmetry in our universe (BAU)

$$
Y_B \equiv \frac{n_b}{s} = (8.50 \pm 0.11) \times 10^{-11}
$$

Sakharov conditions:

• Baryon number violation • C and CP violation • Depature from thermal equilibrium 1st order phase transition X complex phases electroweak sphalerons v 1st order phase transition ✔ χ χ

EWPT: 1st order phase transition

The most economic way: introducing additional scalar(s)

I am not alone

ಸ

CPV: complex phases

anywhere in the SM sector, but mostly studied in

CPV: complex phases

less studied in the extended sector

CPV: complex phases

less studied in the extended sector

M. Carena, M. Quirós, Y. Zhang, Phys. Rev. Lett. 122, 201802 (2019)

dark matter

CPV: complex phases

less studied in the extended sector

challenge: transfer CP violation from the *dark* sector to the *visible* sector

CPV: complex phases

less studied in the extended sector

Real triplet scalar (1, 3, 0):

$$
\Sigma = \frac{1}{2}\begin{pmatrix} \Sigma^0 & \sqrt{2}\Sigma^+ \\ \sqrt{2}\Sigma^- & -\Sigma^0 \end{pmatrix}
$$

Real triplet scalar (1, 3, 0):

$$
\Sigma = \frac{1}{2}\begin{pmatrix} \Sigma^0 & \sqrt{2}\Sigma^+ \\ \sqrt{2}\Sigma^- & -\Sigma^0 \end{pmatrix}
$$

$$
\left\langle \Sigma^{0}\right\rangle =0
$$

- dark matter candidate **M. Cirelli, N. Fornengo and A. Strumia, NPB 753, ¹⁷⁸ (2006) P. Fileviez Pérez,H. H. Patel, M. J. Ramsey-Musolf, K. Wang, Phys. Rev. D 79 (2009) 055024**
- 1st order phase transition

$$
\langle \Sigma^0 \rangle = x_0 \to 0
$$

H. H. Patel, M. J. Ramsey-Musolf, Phys. Rev. D 88 (2013) 035013

Real triplet scalar (1, 3, 0):

$$
\Sigma = \frac{1}{2}\begin{pmatrix}\Sigma^0 & \sqrt{2}\Sigma^+ \\ \sqrt{2}\Sigma^- & -\Sigma^0 \end{pmatrix}
$$

• neutrino masses?

Real triplet scalar (1, 3, 0):

$$
\Sigma = \frac{1}{2}\begin{pmatrix}\Sigma^0 & \sqrt{2}\Sigma^+ \\ \sqrt{2}\Sigma^- & -\Sigma^0 \end{pmatrix}
$$

• neutrino masses?

In case of a complex triplet scalar (1, 3, 1)

$$
\Delta = \begin{pmatrix} \frac{\Delta^{+}}{\sqrt{2}} & \Delta^{++} \\ \Delta^{0} & -\frac{\Delta^{+}}{\sqrt{2}} \end{pmatrix} \qquad \mathcal{L} \supset - (Y_{\Delta})_{ij} \overline{L_{i}^{C}} i \sigma^{2} \Delta L_{j} + \text{ h.c.}
$$

$$
\Delta^{0} \rightarrow \langle \Delta^{0} \rangle \qquad \text{hypercharge:} \quad -1/2 - 1/2 + 1 = 0
$$

neutrino mass in type-II seesaw mechanism

Real triplet scalar (1, 3, 0):

$$
\Sigma = \frac{1}{2}\begin{pmatrix} \Sigma^0 & \sqrt{2}\Sigma^+ \\ \sqrt{2}\Sigma^- & -\Sigma^0 \end{pmatrix}
$$

• neutrino masses?

 \mathbb{F}^0

 f_{R2} $Y_{f\sigma}$ $(f_{R1})^c$

 H_{\parallel}

 $\frac{H}{\sim}$

$$
4 \operatorname{Tr} \left(\bar{f}_{Ri}^{c} Y_{f\sigma} \Sigma f_{Rj} \right) = i Y_{f\sigma} \bar{f}_{Li}^{a} \Sigma^{b} f_{Rj}^{c} \epsilon^{abc}
$$

$$
Y_{f\sigma 12} \left(\overline{\left(f_{R1}^{+} \right)^{c}} f_{R2}^{+} - \overline{\left(f_{R1}^{-} \right)^{c}} f_{R2}^{-} \right) \left(v_{\Sigma} + \Sigma^{0} \right)
$$

$$
\Sigma^{0} \rightarrow \left\langle \Sigma^{0} \right\rangle \qquad \text{hypercharge:} \quad -1/2 + 1/2 + 0 = 0
$$

neutrino mass in type-III seesaw mechanism

Y. Cheng, X.-G. He, M. J. Ramsey-Musolf, J. Sun, Phys.Rev.D 105 (2022) 095010

CPV: complex phases

less studied in the extended sector

task : **finding a suitable mechanism** to transfer CP violation from the extended sector to the SM sector

• kinetic mixing

Abelian case:

$$
\mathcal{L} \supset -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\sigma}{2} X_{\mu\nu} B^{\mu\nu}
$$

- **B. Holdom, Phys. Lett. B166, 196 (1986) R. Foot, X.-G. He Phys.Lett. B267 (1991) 509**
	- Where does σ comes from?

kinetic mixing

Abelian case:

$$
\mathcal{L} \supset -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\sigma}{2} X_{\mu\nu} B^{\mu\nu}
$$

B X

If $\mathsf{U}(1)_\mathsf{x}$ is fundamental, σ exists in the UV

If $\mathsf{U}(1)_\mathsf{x}$ is from other symmetry breaking

B. Holdom, Phys. Lett. B166, 196 (1986) R. Foot, X.-G. He Phys.Lett. B267 (1991) 509

• Where does σ comes from?

kinetic mixing

Abelian case: $\mathcal{L} \supset -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\sigma}{2} X_{\mu\nu} B^{\mu\nu}$ *B X*

 $\mathcal{L} \supset -\frac{1}{4} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} - \frac{1}{4} \hat{X}_{\mu\nu} \hat{X}^{\mu\nu}$

B. Holdom, Phys. Lett. B166, 196 (1986) R. Foot, X.-G. He Phys.Lett. B267 (1991) 509

• Where does σ go?

kinetic mixing

Abelian case: $\mathcal{L} \supset -\frac{1}{4} B_{\mu\nu} B^{\mu\nu} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\sigma}{2} X_{\mu\nu} B^{\mu\nu}$ *B X*

B. Holdom, Phys. Lett. B166, 196 (1986) R. Foot, X.-G. He Phys.Lett. B267 (1991) 509

• Where does σ go?

other terms in the Lagrangian

 $\mathcal{L} \supset -\frac{1}{4} \hat{B}_{\mu\nu} \hat{B}^{\mu\nu} - \frac{1}{4} \hat{X}_{\mu\nu} \hat{X}^{\mu\nu}$

 $\mathcal{L} \supset j^{\mu}_B B_{\mu} + j^{\mu}_X X_{\mu}$

Special attention should be paid if dark photon is exactly massless **J.-X. Pan, M. He, X.-G. He, GL,**

Nucl.Phys.B 953 (2020) 114968

• various constraints and (projected) searches

M. Fabbrichesi, E. Gabrielli, G. Lanfranchi, 2005.01515

• various constraints and (projected) searches

DarkSHINE experiment, Sci.China Phys.Mech.Astron. 66 (2023) 1,211062

M. He, X.-G. He, C.-K. Huang, GL, JHEP 03 (2018) 139

Effective field theory

W3 X
$$
\mathcal{L} \supset -\frac{1}{4}X_{\mu\nu}X^{\mu\nu} - \frac{\beta}{\Lambda} \operatorname{Tr} [W_{\mu\nu}\Sigma] X^{\mu\nu}
$$

T. Peng, M. J. Ramsey-Musolf, Phys.Lett. B770 (2017) 101

 $W_{\mu\nu}=W_{\mu\nu}^a\tau^a/2 \qquad \Sigma=\frac{1}{2}\Bigg(\frac{\Sigma^0}{\sqrt{2}\Sigma^-}\quad \frac{\sqrt{2}\Sigma^+}{-\Sigma^0}\Bigg)$

• *X* interacts with the SM only through the non-Abelian kinetic mixing

$$
\left\langle \Sigma^{0}\right\rangle =v_{\Sigma}
$$

• Σ can also interact with th SM through the mixing $\Sigma - H$

Effective field theory

W3 X
$$
\mathcal{L} \supset -\frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\beta}{\Lambda} \operatorname{Tr} [W_{\mu\nu} \Sigma] X^{\mu\nu} - \frac{\tilde{\beta}}{\Lambda} \operatorname{Tr} [W_{\mu\nu} \Sigma] \tilde{X}^{\mu\nu}
$$

\n $W_{\mu\nu} = W_{\mu\nu}^a \tau^a / 2 \qquad \Sigma = \frac{1}{2} \begin{pmatrix} \Sigma^0 & \sqrt{2} \Sigma^+ \\ \sqrt{2} \Sigma^- & -\Sigma^0 \end{pmatrix}$
\n $W_{\mu\nu} = W_{\mu\nu}^a \tau^a / 2 \qquad \Sigma = \frac{1}{2} \begin{pmatrix} \Sigma^0 & \sqrt{2} \Sigma^+ \\ \sqrt{2} \Sigma^- & -\Sigma^0 \end{pmatrix}$

K. Fuyuto, X.-G. He, GL, Musolf, Phys.Rev.D 101 (2020) 075016

• *X* interacts with the SM only through the non-Abelian kinetic mixing W^3

$$
\left\langle \Sigma^{0}\right\rangle =v_{\Sigma}
$$

• Σ can also interact with th SM through the mixing $\Sigma - H$

• Effective field theory

W3
\n
$$
\mathbf{X} \qquad \mathcal{L} \supset -\frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\beta}{\Lambda} \operatorname{Tr} \left[W_{\mu\nu} \Sigma \right] X^{\mu\nu} - \frac{\beta}{\Lambda} \operatorname{Tr} \left[W_{\mu\nu} \Sigma \right] \tilde{X}^{\mu\nu}
$$
\n
$$
W_{\mu\nu} = W_{\mu\nu}^a \tau^a / 2 \qquad \Sigma = \frac{1}{2} \begin{pmatrix} \Sigma^0 & \sqrt{2} \Sigma^+ \\ \sqrt{2} \Sigma^- & -\Sigma^0 \end{pmatrix}
$$
\nMuself, Phys Pov D 101 (2020) 075016

Musolf, Phys.Rev.D 101 (2020) 075016

$$
\frac{\beta}{\Lambda} \text{Tr}[W_{\mu\nu}\Sigma]X^{\mu\nu} - \frac{\tilde{\beta}}{\Lambda} \text{Tr}[W_{\mu\nu}\Sigma] \tilde{X}^{\mu\nu}
$$
\n
$$
W_{\mu\nu}^{3} = \partial_{\mu}W_{\nu}^{3} - \partial_{\mu}W_{\nu}^{3} + g\epsilon^{3bc}W_{\mu}^{b}W_{\nu}^{c}
$$
\n
$$
\text{veV}
$$

Effective field theory

W3 X
$$
\mathcal{L} \supset -\frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\beta}{\Lambda} \operatorname{Tr} [W_{\mu\nu} \Sigma] X^{\mu\nu} - \frac{\beta}{\Lambda} \operatorname{Tr} [W_{\mu\nu} \Sigma] \tilde{X}^{\mu\nu}
$$

K. Fuyuto, X.-G. He, GL, M. J. Ramsey- Musolf, Phys.Rev.D 101 (2020) 075016

$$
W_{\mu\nu}=W_{\mu\nu}^a\tau^a/2 \quad \ \ \Sigma=\frac{1}{2}\Bigg(\begin{matrix}\Sigma^0 & \sqrt{2}\Sigma^+\cr \sqrt{2}\Sigma^- & -\Sigma^0\end{matrix}\Bigg)
$$

Observable:

CPV asymmetry at colliders

distribution: sensitivity is insufficient

• Effective field theory

W3
\n
$$
\mathcal{K} \qquad \mathcal{L} \supset -\frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\beta}{\Lambda} \operatorname{Tr} \left[W_{\mu\nu} \Sigma \right] X^{\mu\nu} - \frac{\tilde{\beta}}{\Lambda} \operatorname{Tr} \left[W_{\mu\nu} \Sigma \right] \tilde{X}^{\mu\nu}
$$
\n
$$
W_{\mu\nu} = W_{\mu\nu}^a \tau^a / 2 \qquad \Sigma = \frac{1}{2} \begin{pmatrix} \Sigma^0 & \sqrt{2} \Sigma^+ \\ \sqrt{2} \Sigma^- & -\Sigma^0 \end{pmatrix}
$$
\n
$$
W_{\mu\nu} = W_{\mu\nu}^a \tau^a / 2 \qquad \Sigma = \frac{1}{2} \begin{pmatrix} \Sigma^0 & \sqrt{2} \Sigma^+ \\ \sqrt{2} \Sigma^- & -\Sigma^0 \end{pmatrix}
$$

K. Fuyuto, X.-G. He, GL, M. J. Ramsey- Musolf, Phys.Rev.D 101 (2020) 075016

Observable:

electric dipole momen

CPV Σ^0W^3X int.

$$
\mathcal{L}^{\text{EDM}} = -\frac{i}{2} d_f \bar{f} \sigma^{\mu\nu} \gamma_5 f F_{\mu\nu}
$$
\n
$$
\gamma
$$
\n
$$
\gamma
$$
\n
$$
Z, X \rightarrow \gamma
$$
\n
$$
H_1, H_2
$$
\n
$$
\left(\frac{H_1}{H_2}\right) = \left(\begin{matrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{matrix}\right) \left(\begin{matrix} h \\ \Sigma^0 \end{matrix}\right)
$$
\n
$$
f
$$
\n
$$
-\frac{\tilde{\beta}}{2\Lambda} s_W A_{\mu\nu} (c_{\theta} H_2 + s_{\theta} H_1) (c_{\xi} \tilde{X}^{\mu\nu} - s_{\xi} \tilde{Z}^{\mu\nu})
$$
\n
$$
26
$$

Effective field theory

W3 X
$$
\mathcal{L} \supset -\frac{1}{4}X_{\mu\nu}X^{\mu\nu} - \frac{\beta}{\Lambda} \operatorname{Tr} [W_{\mu\nu}\Sigma] X^{\mu\nu} - \frac{\beta}{\Lambda} \operatorname{Tr} [W_{\mu\nu}\Sigma] \tilde{X}^{\mu\nu}
$$

K. Fuyuto, X.-G. He, GL, M. J. Ramsey- Musolf, Phys.Rev.D 101 (2020) 075016

Observable:

electric dipole moments

$$
d_f = \frac{e}{8\pi^2} \frac{m_f}{v} c_\theta s_\theta \left[C_Z V_Z^f f(r_{ZH_1}, r_{ZH_2}) \right]
$$

$$
+ C_X V_X^f f(r_{XH_1}, r_{XH_2}) \Big]
$$

$$
C_Z = \frac{\tilde{\beta}}{\Lambda} s_W s_\xi, \quad C_X = \frac{\tilde{\beta}}{\Lambda} s_W c_\xi
$$

$$
V_X = (c_\xi \alpha_{ZX} - s_\xi) v_Z + Q_f \alpha_{AX} c_\xi s_W c_W
$$

$$
A_X = (c_\xi \alpha_{ZX} - s_\xi) a_Z
$$

Effective field theory

W3 X
$$
\mathcal{L} \supset -\frac{1}{4}X_{\mu\nu}X^{\mu\nu} - \frac{\beta}{\Lambda} \operatorname{Tr} [W_{\mu\nu}\Sigma] X^{\mu\nu} - \frac{\beta}{\Lambda} \operatorname{Tr} [W_{\mu\nu}\Sigma] \tilde{X}^{\mu\nu}
$$

K. Fuyuto, X.-G. He, GL, M. J. Ramsey- Musolf, Phys.Rev.D 101 (2020) 075016

Observable:

electric dipole moments

Feature:

Feature:

new CPV source is associated to $\frac{a}{\alpha}$ the **light** and weakly coupled new physics

Snowmass 2203.08103

• UV completion

W3 X
$$
\mathcal{L} \supset -\frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\beta}{\Lambda} \operatorname{Tr} [W_{\mu\nu} \Sigma] X^{\mu\nu} - \frac{\beta}{\Lambda} \operatorname{Tr} [W_{\mu\nu} \Sigma] \tilde{X}^{\mu\nu}
$$

$$
W_{\mu\nu} = W_{\mu\nu}^a \tau^a / 2 \qquad \Sigma = \frac{1}{2} \begin{pmatrix} \Sigma^0 & \sqrt{2} \Sigma^+ \\ \sqrt{2} \Sigma^- & -\Sigma^0 \end{pmatrix}
$$

UV completion

W3 X
$$
\mathcal{L} \supset -\frac{1}{4}X_{\mu\nu}X^{\mu\nu} - \frac{\beta}{\Lambda} \operatorname{Tr} [W_{\mu\nu}\Sigma] X^{\mu\nu} - \frac{\tilde{\beta}}{\Lambda} \operatorname{Tr} [W_{\mu\nu}\Sigma] \tilde{X}^{\mu\nu}
$$

Y. Cheng, X.-G. He, M. J. Ramsey- Musolf, J. Sun, Phys.Rev.D 105 (2022) 095010

$$
W_{\mu\nu}=W_{\mu\nu}^a\tau^a/2 \quad \ \ \Sigma=\frac{1}{2}\begin{pmatrix}\Sigma^0 & \sqrt{2}\Sigma^+\\ \sqrt{2}\Sigma^- & -\Sigma^0\end{pmatrix}
$$

• UV completion

 $\frac{\tilde{\beta}_X}{\Lambda}$

 $\frac{\beta_X}{\Lambda}$

W3
\n
$$
\mathbf{X} \qquad \mathcal{L} \supset -\frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\beta}{\Lambda} \operatorname{Tr} \left[W_{\mu\nu} \Sigma \right] X^{\mu\nu} - \frac{\tilde{\beta}}{\Lambda} \operatorname{Tr} \left[W_{\mu\nu} \Sigma \right] \tilde{X}^{\mu\nu}
$$
\n
$$
\mathbf{Y. Cheng, X.-G. He, M. J. Ramsey.
$$
\n**Musolf, J. Sun, Phys. Rev.D 105 (2022)
\n095010
\n
$$
\frac{\tilde{y}}{\Lambda} = \frac{1}{2\pi^2} g g_X x_f \operatorname{Im} \left(m_{12} Y_{f\sigma}^* \right) \times \left[f(m_1, m_2, p_W, p_X) + f(m_2, m_1, p_W, p_X) \right]
$$
\n
$$
\frac{\frac{\tilde{y}}{\Lambda}}{\Lambda} = \frac{1}{2\pi^2} g g_X x_f \operatorname{Re} \left(m_{12} Y_{f\sigma}^* \right) \times \left[f(m_1, m_2, p_W, p_X) + f(m_2, m_1, p_W, p_X) \right]
$$
\n
$$
\frac{\frac{\tilde{y}}{\Lambda}}{\Lambda} = \frac{1}{2\pi^2} g g_X x_f \operatorname{Re} \left(m_{12} Y_{f\sigma}^* \right) \times \left[f(m_1, m_2, p_W, p_X) + f(m_2, m_1, p_W, p_X) \right]
$$
\n
$$
\frac{\frac{\tilde{y}}{\Lambda}}{\frac{\tilde{y}}{\Lambda}} = \frac{\frac{\tilde{y}}{\Lambda}}{\frac{1}{2\pi^2}} \operatorname{Im} \left(\frac{m_{12} \Sigma}{\Lambda} \right) \operatorname{Im} \left(\frac{m_{12
$$**

UV completion

W3 X
$$
\mathcal{L} \supset -\frac{1}{4} X_{\mu\nu} X^{\mu\nu} - \frac{\beta}{\Lambda} \operatorname{Tr} [W_{\mu\nu} \Sigma] X^{\mu\nu} - \frac{\beta}{\Lambda} \operatorname{Tr} [W_{\mu\nu} \Sigma] \tilde{X}^{\mu\nu}
$$

\n $W_{\mu\nu} = W_{\mu\nu}^a \tau^a / 2 \qquad \Sigma = \frac{1}{2} \begin{pmatrix} \Sigma^0 & \sqrt{2} \Sigma^+ \\ \sqrt{2} \Sigma^- & -\Sigma^0 \end{pmatrix}$
\nSun, Phys. Rev.D 105 (2022)

Y. Cheng, X.-G. He, M. J. Ramsey- Musolf, **J. 095010**

 $-\bar{L}_L Y_e \tilde{H} E_R - \bar{L}_L Y_{fL3} \tilde{H} f_{R3} - \bar{f}_{R1}^c Y_{fs1} S_X f_{R1}$ $-\,\bar{f}^c_{R2}Y_{fs2}S^\dagger_Xf_{R2}-\bar{f}^c_{R_1}m_{12}f_{R2}-\bar{f}^c_{R3}m_{33}f_{R3}$ $-\bar{Q}_L Y_u H U_R - \bar{Q}_L Y_d \tilde{H} D_R.$

Neutrino masses:

$$
\mathcal{L}_m = -\frac{1}{2} (\bar{\nu}_L, \bar{\nu}_R^c) \begin{pmatrix} 0 & M_D \\ M_D^T & M_R \end{pmatrix} \begin{pmatrix} \nu_L^c \\ \nu_R \end{pmatrix} - (\bar{E}_L, \bar{f}_L) \begin{pmatrix} m_e & \sqrt{2}M_D \\ 0 & M_R \end{pmatrix} \begin{pmatrix} E_R \\ f_R \end{pmatrix}
$$

Summary

- Real triplet scalar enables a strong 1st order phase transition
- The CPV interaction between real triplet scalar and triplet leptons can explain neutrino masses
- Non-Abelian kinetic mixing assisted with dark photon can transfer CP violation from the extended sector to the SM sector

