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Introduction to gauge theories



In classical mechanics, for a system consisting of a set of 
point masses, we have

Classical trajectory is determined by the requirement 
that the action is stationary

Euler-Lagrange equation

Lagrangian formalism

L(qi, ·qi) = T − V, S = ∫ dt L

δS = 0

d
dt

∂L
∂ ·qi

=
∂L
∂qi

Example : L =
1
2

m ·q2 − V(q), S = ∫
t2

t1

dt L

Example : m··q = − ∂V/∂q



In classical mechanics, for a system consisting of a set of 
point masses, we have

Classical trajectory is determined by the requirement 
that the action is stationary

Euler-Lagrange equation

Lagrangian formalism

L(qi, ·qi) = T − V, S = ∫ dt L

δS = 0

d
dt

∂L
∂ ·qi

=
∂L
∂qi

Example : L =
1
2

m ·q2 − V(q), S = ∫
t2

t1

dt L

Example : m··q = − ∂V/∂q

Homework: What if the Lagrangian contains 
higher-order derivatives?



Concept of classical fields:

For a continuum system with infinite # of dof’s and 
Lorentz symmetry, we can do the replacement

The action has the form

Equation of motion

Lagrangian formalism

qi → ϕ(x), ·qi → ∂μϕ(x)

S = ∫ dt L = ∫ d4xℒ(ϕ, ∂μϕ), L = ∫ d3 ⃗x ℒ

δS = 0 → ∂μ
∂L

∂(∂μϕ)
=

∂L
∂ϕ

→



Example 1:

Equation of motion  
 
 
which is nothing but the relativistic energy-mass relation

Example 2:  
 
 
the last term has the form of Higgs potential, and is 
important for spontaneous symmetry breaking

Lagrangian formalism

ℒ = 𝒯 − 𝒱 =
1
2

(∂μϕ)2 −
1
2

m2ϕ2 =
1
2

·ϕ2 −
1
2

( ⃗∇ ϕ)2 −
1
2

m2ϕ2

(∂μ∂μ + m2)ϕ(x) = 0

ℒ =
1
2

(∂μϕ)2 −
1
2

m2ϕ2 −
1
4

λϕ4



Quantum theory (path integral perspective): 

 In quantum mechanics, for a particle propagating from 
A to B all paths are allowed, and have to be summed up, 
but with a weight factor

Contribution of different paths cancels out except near 
the stationary phase leads to the classical trajectory

Lagrangian formalism

eiS/ℏ

⟨qB, tB |qA, tA⟩ =

N∫ 𝒟q exp[i∫
tB

tA

L(q, ·q)dt]



Quantum theory (path integral perspective): 

 In quantum field theory, for a particle (antiparticle) 
propagating from A to B all paths are allowed, and have 
to be summed up, but with a weight factor

This functional integral is complex and strongly 
oscillating, difficult to give it a satisfactory mathematical 
meaning

Lagrangian formalism

eiS/ℏ

⟨Tϕ(xB)ϕ(xA)⟩ =

N∫ 𝒟ϕ ϕ(xB)ϕ(xA) exp[i∫ d4xℒ(ϕ)]



This can be resolved by going to imaginary time or to 
Euclidean spacetime

The Euclidean path integral becomes real and bounded 
from above, if the potential is bounded from below

Numerical calculations and theoretical analysis become 
much easier, similarity with statistical physics

Sufficient to extract most physical information, can also 
be analytically continued back to real time (Minkowski 
spacetime) if needed (for analytic calculations)

Euclidean formulation

t → − itE, exp[iS] → exp[−SE]



In analogy with statistical physics, physical observables 
are evaluated as 

The partition function

Example 1:

From here on, the discussions will be in Euclidean 
spacetime

Euclidean formulation

⟨O⟩ =
1
Z ∫ 𝒟ϕ O exp[ − SE]

Z = ∫ 𝒟ϕ exp[ − SE]

SE = ∫ d4xE[ 1
2

(∂μϕ)2 +
1
2

m2ϕ2]



Electric and magnetic fields are described by a 4-vector

The field strength is

A QED Lagrangian shall contain both electrons and 
photons, we can begin with

It leads to free EOMs for electrons and photons, the 
former is Dirac equation, the relativistic analogue of 
Schroedinger equation in quantum mechanics
How does the interaction enter?

Gauge theories: Quantum electrodynamics

Aμ = (φ, ⃗A )

Fμν = ∂μAν − ∂νAμ

ℒ = −
1
4

FμνFμν − ψ̄γμ∂μψ − mψ̄ ψ



The Lagrangian is invariant under a global symmetry 
transformation  
 
with    a constant and q the charge of the electron

However, electron fields at different spacetime points 
shall be able to transform differently with  
 
then the global symmetry becomes local
         is still invariant, but            is not. The Lagrangian 
can be made invariant if we replace

Gauge theories: Quantum electrodynamics

ψ′�(x) = eiωqψ(x), ψ̄′�(x) = e−iωqψ̄(x), A′�μ(x) = Aμ(x)
ω

ω = ω(x)

mψ̄ ψ ψ̄γμ∂μψ

∂μψ → Dμψ = (∂μ − iqAμ)ψ with A′�μ(x) = Aμ(x) + ∂μω(x)



The invariant Lagrangian under local gauge symmetry 
transformation is  
 

Local gauge symmetry dictates interactions
The field strength can also be written as

The gauge transformation phase factor  
 
forms a group, the U(1) (1-dim. unitary) group. It has 1 
dof, corresponds to 1 photon field
We call this group an Abelian (commutative) group as  

Gauge theories: Quantum electrodynamics

ℒ = −
1
4

FμνFμν−ψ̄γμ(∂μ−iqAμ)ψ−mψ̄ ψ

Fμν = DμAν − DνAμ

Ω(x) = eiω(x)

Ω(x)Ω(y) = Ω(y)Ω(x)



The invariant Lagrangian under local gauge symmetry 
transformation is  
 

Local gauge symmetry dictates interactions
The field strength can also be written as

The gauge transformation phase factor  
 
forms a group, the U(1) (1-dim. unitary) group. It has 1 
dof, corresponds to 1 photon field
We call this group an Abelian (commutative) group as  

Gauge theories: Quantum electrodynamics

ℒ = −
1
4

FμνFμν−ψ̄γμ(∂μ−iqAμ)ψ−mψ̄ ψ

Fμν = DμAν − DνAμ

Ω(x) = eiω(x)

Ω(x)Ω(y) = Ω(y)Ω(x)

Homework: Derive these equations by yourself.



We can rewrite the gauge transformation as  

The covariant derivative acting on        transforms just 
like        itself  
 
 
so that                              is gauge invariant

Natural to ask: What if the gauge transformation phase 
factor        is not just a number?     

Gauge theories: Quantum electrodynamics

ψ′�(x) = Ω(x)ψ(x), ψ̄′�(x) = Ω*(x)ψ̄(x), A′�μ(x) = Aμ(x) + iΩ(x)∂μΩ*(x)

ψ(x)
ψ(x)

D′�μψ′�(x) = [∂μ − iqA′�μ(x)]ψ′�(x) = Ω(x)Dμψ(x)

ψ̄′�γμD′�μψ′� = ψ̄γμDμψ

Ω(x)



        can be generalized to matrix-valued, which means 
we enlarge the symmetry group

For example, the U(1) group in QED can be generalized 
to SU(3) (3-dim. special unitary), whose elements are 
3x3 unitary matrices with determinant 1 (                dofs)

                  are a complete set of Hermitian traceless 3x3 
matrices, also called generators of the group (in a given 
representation), correspond to 8 gauge fields - gluons
Now                               , it is called a non-Abelian group 
(Yang-Mills theory)

Gauge theories: Quantum chromodynamics
Ω(x)

Ω(x) = eiωk(x)tk

tk, k = 1...8

32 − 1 = 8

Ω(x)Ω(y) ≠ Ω(y)Ω(x)



A standard choice:                with (    are Pauli matrices)

They satisfy

       are structure constants of the group, and are totally 
antisymmetric with respect to the interchange of any two 
indices

Gauge theories: Quantum chromodynamics
tk = 1/2λk σi

Tr(tktl) =
1
2

δkl, [tk, tl] = ifklmtm

fklm



Under the matrix-valued gauge transformation, the 
fermion field transforms as

Which implies

For it to be invariant, we need

Analogous to QED, we can define the field strength

And thus the gauge part of QCD Lagrangian

Gauge theories: Quantum chromodynamics



The gauge field can be decomposed in terms of color 
components (    is an appropriate matrix representation)  
 
 

 The Lagrangian becomes

It appears as 8 copies of QED gauge Lagrangian, but 
there is a crucial difference coming from                   , it 
leads to cubic and quadratic  
gluon self-interactions

Gauge theories: Quantum chromodynamics

Aμ(x) =
8

∑
i=1

Ai
μ(x)Ti

Ti

Fμν(x) =
8

∑
i=1

Fi
μν(x)Ti, Fi

μν(x) = ∂μAi
ν(x) − ∂νAi

μ(x)−fijkAj
μ(x)Ak

ν(x)

Lg =
1
4

8

∑
i=1

Fμν,i(x)Fi
μν(x)

fijkAj
μ(x)Ak

ν(x)



Gauge theories on the lattice



Euclidean formulation of QFTs can be conveniently 
realized on a discrete lattice

We need to discretize the  
Lagrangian
Discretized derivative

Again, local gauge invariance dictates the existence of 
gauge fields and their transformation properties

Gauge theories on the lattice

na = (n1, n2, n3, n4)a
A spacetime point is characterized by



Under discrete gauge transformation

We have

Gauge non-invariance can be compensated if we 
introduce a field         to form a combination  
                           and let it transform as

         links the fermion fields at different spacetime 
points, and thus is called a link variable         

Gauge theories on the lattice

Uμ(n)
ψ̄(n)Uμ(n)ψ(n + ̂μ)

Uμ(n)

U−μ(n + ̂μ) = U†
μ(n)



Now we have a gauge-invariant expression 

         plays the same role on the lattice as that the gauge 
field plays in the continuum, its continuum counterpart 
is the so-called gauge transporter  
 
 
which connects fermions at different spacetime points x, 
y to form a gauge-invariant combination
Its discrete version is (accurate to O(a))  
 
and gives the continuum action in           limit

Gauge theories on the lattice

Uμ(n)

Uμ(n) = eiaAμ(n)

a → 0



Euclidean formulation of QFTs can be conveniently 
realized on a discrete lattice

Gauge theories on the lattice



Gauge part of the action can be constructed from a 
closed loop formed by link variables, called a plaquette

Then the gauge action can be constructed as (Wilson)

This is the first lattice formulation of QCD gauge action

Gauge theories on the lattice



Numerical Simulations

The path integral are evaluated approximately by N 
sample configurations   with the distribution  
probability . An observable  is 
estimated as the average over the N configurations:                                                  

{Un}
exp{−Sg[Un]} O

⟨O⟩ =
1
N ∑

n

O[Un] + 𝒪(1/ N )

How to generate the configurations? 



Numerical Simulations
Metropolis algorithm:
• Start from some configuration, choose a site  and a direction , 

change this link variable .
•  Calculate the change of the action

n μ
Uμ(n) → U′ �μ(n)

ΔS = S(U′ �μ(n)) − S(Uμ(n)) = −
β
3

Re tr[(U′�μ(n) − Uμ(n))A] .

•  Accept the new variable  if 
, where  is a random 

number uniformly distributed in 
[0,1).

• Repeat these step from the 
beginning.  

U′�μ(n)
r < exp(−ΔS) r



Numerical Simulations

• Heatbath
   • The candidate link  is chosen according to its local 
probability:

U′�μ(n)

dP(U) = dUexp(
β
3

Re tr[UA])

• More efficient than metropolis, but suffers critical slowing down.

• Overrelaxation
    • The candidate link is chosen such that the action is preserved. 
Such   a change is always accepted. 

• Not ergodic, must be used in combination with an ergodic 
algorithm such as Heatbath.



Numerical Simulations

Start from a slightly perturbed unit gauge

Random seeds.

Number of updates before equilibrium

Autocorrelation length



Numerical Simulations

Gauge action type

 valueβ

Boundary condition

Number of Overrelaxation sweeps

Number of Heatbath sweeps

Lattice size



Numerical Simulations


