Pure gauge theory on the lattice

刘柳明（中国科学院近代物理研究所）
 \＆

张建辉（北京师范大学）

第三届格点数值量子场论训练营
2020.08.18-19

References

- Lancaster and Blundell, Quantum field theory for a gifted amateur, Oxford University Press.
- Peskin and Schroeder, An introduction to quantum field theory, Westview Press.

Gattringer and Lang, Quantum chromodynamics on the lattice, Lect. Notes Phys. 788, 1 (2010).
-Smit, Introduction to quantum fields on a lattice: A robust mate, Cambridge Lect. Notes Phys. 15, 1 (2002).

Introduction to gauge theories

Lagrangian formalism

- In classical mechanics, for a system consisting of a set of point masses, we have

$$
\begin{aligned}
& \qquad L\left(q_{i}, \dot{q}_{i}\right)=T-V, \quad S=\int d t L \\
& \text { Example : } L=\frac{1}{2} m \dot{q}^{2}-V(q), \quad S=\int_{t_{1}}^{t_{2}} d t L
\end{aligned}
$$

Classical trajectory is determined by the requirement that the action is stationary

$$
\delta S=0
$$

- Euler-Lagrange equation

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}=\frac{\partial L}{\partial q_{i}}
$$

Example : $m \ddot{q}=-\partial V / \partial q$

Lagrangian formalism

- In classical mechanics, for a system consisting of a set of point masses, we have

$$
L\left(q_{i}, \dot{q}_{i}\right)=T-V, \quad S=\int d t L
$$

Homework: What if the Lagrangian contains higher-order derivatives?
Classical trajectory is determmed oy me requrrement that the action is stationary

$$
\delta S=0
$$

- Euler-Lagrange equation

$$
\frac{d}{d t} \frac{\partial L}{\partial \dot{q}_{i}}=\frac{\partial L}{\partial q_{i}}
$$

Example : $m \ddot{q}=-\partial V / \partial q$

Lagrangian formalism

-Concept of classical fields:

For a continuum system with infinite \# of dof's and Lorentz symmetry, we can do the replacement

$$
q_{i} \rightarrow \phi(x), \quad \dot{q}_{i} \rightarrow \partial_{\mu} \phi(x)
$$

- The action has the form

$$
S=\int d t L=\int d^{4} x \mathscr{L}\left(\phi, \partial_{\mu} \phi\right), \quad L=\int d^{3} \vec{x} \mathscr{L}
$$

Equation of motion

$$
\delta S=0 \rightarrow \partial_{\mu} \frac{\partial L}{\partial\left(\partial_{\mu} \phi\right)}=\frac{\partial L}{\partial \phi}
$$

Lagrangian formalism

- Example 1:

$$
\mathscr{L}=\mathscr{T}-\mathscr{V}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} m^{2} \phi^{2}=\frac{1}{2} \dot{\phi}^{2}-\frac{1}{2}(\vec{\nabla} \phi)^{2}-\frac{1}{2} m^{2} \phi^{2}
$$

- Equation of motion

$$
\left(\partial^{\mu} \partial_{\mu}+m^{2}\right) \phi(x)=0
$$

which is nothing but the relativistic energy-mass relation

Example 2:

$$
\mathscr{L}=\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}-\frac{1}{2} m^{2} \phi^{2}-\frac{1}{4} \lambda \phi^{4}
$$

the last term has the form of Higgs potential, and is important for spontaneous symmetry breaking

Lagrangian formalism

Quantum theory (path integral perspective):

- In quantum mechanics, for a particle propagating from A to B all paths are allowed, and have to be summed up, but with a weight factor $e^{i S / \hbar}$

$$
\begin{aligned}
& \left\langle q_{B}, t_{B} \mid q_{A}, t_{A}\right\rangle= \\
& \quad N \int \mathscr{D} q \exp \left[i \int_{t_{A}}^{t_{B}} L(q, \dot{q}) d t\right]
\end{aligned}
$$

Contribution of different paths cancels out except near the stationary phase leads to the classical trajectory

Lagrangian formalism

-Quantum theory (path integral perspective):

- In quantum field theory, for a particle (antiparticle) propagating from A to B all paths are allowed, and have to be summed up, but with a weight factor $e^{i S / \hbar}$
$\left\langle T \phi\left(x_{B}\right) \phi\left(x_{A}\right)\right\rangle=$
$N \int \mathscr{D} \phi \phi\left(x_{B}\right) \phi\left(x_{A}\right) \exp \left[i d^{4} x \mathscr{L}(\phi)\right]^{\frac{\tilde{W}}{\tilde{\circ}}}$

-This functional integral is complex and strongly oscillating, difficult to give it a satisfactory mathematical meaning

Euclidean formulation

- This can be resolved by going to imaginary time or to Euclidean spacetime

$$
t \rightarrow-i t_{E}, \quad \exp [i S] \rightarrow \exp \left[-S_{E}\right]
$$

- The Euclidean path integral becomes real and bounded from above, if the potential is bounded from below
- Numerical calculations and theoretical analysis become much easier, similarity with statistical physics
-Sufficient to extract most physical information, can also be analytically continued back to real time (Minkowski spacetime) if needed (for analytic calculations)

Euclidean formulation

- In analogy with statistical physics, physical observables are evaluated as

$$
\langle O\rangle=\frac{1}{Z} \int \mathscr{D} \phi O \exp \left[-S_{E}\right]
$$

The partition function

$$
Z=\int \mathscr{D} \phi \exp \left[-S_{E}\right]
$$

Example 1:

$$
S_{E}=\int d^{4} x_{E}\left[\frac{1}{2}\left(\partial_{\mu} \phi\right)^{2}+\frac{1}{2} m^{2} \phi^{2}\right]
$$

\bigcirc From here on, the discussions will be in Euclidean spacetime

Gauge theories: Quantum electrodynamics

- Electric and magnetic fields are described by a 4-vector

$$
A^{\mu}=(\varphi, \vec{A})
$$

The field strength is

$$
F^{\mu \nu}=\partial^{\mu} A^{\nu}-\partial^{\nu} A^{\mu}
$$

- A QED Lagrangian shall contain both electrons and photons, we can begin with

$$
\mathscr{L}=-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}-\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi-m \bar{\psi} \psi
$$

- It leads to free EOMs for electrons and photons, the former is Dirac equation, the relativistic analogue of Schroedinger equation in quantum mechanics
- How does the interaction enter?

Gauge theories: Quantum electrodynamics

- The Lagrangian is invariant under a global symmetry transformation

$$
\psi^{\prime}(x)=e^{i \omega q} \psi(x), \quad \bar{\psi}^{\prime}(x)=e^{-i \omega q} \bar{\psi}(x), \quad A_{\mu}^{\prime}(x)=A_{\mu}(x)
$$

with ω a constant and q the charge of the electron
-However, electron fields at different spacetime points shall be able to transform differently with

$$
\omega=\omega(x)
$$

then the global symmetry becomes local

- $m \bar{\psi} \psi$ is still invariant, but $\bar{\psi} \gamma^{\mu} \partial_{\mu} \psi$ is not. The Lagrangian can be made invariant if we replace

$$
\partial_{\mu} \psi \rightarrow D_{\mu} \psi=\left(\partial_{\mu}-i q A_{\mu}\right) \psi \text { with } A_{\mu}^{\prime}(x)=A_{\mu}(x)+\partial_{\mu} \omega(x)
$$

Gauge theories: Quantum electrodynamics

- The invariant Lagrangian under local gauge symmetry transformation is

$$
\mathscr{L}=-\frac{1}{4} F^{\mu \nu} F_{\mu \nu}-\bar{\psi} \gamma^{\mu}\left(\partial_{\mu}-i q A_{\mu}\right) \psi-m \bar{\psi} \psi
$$

- Local gauge symmetry dictates interactions

The field strength can also be written as

$$
F^{\mu \nu}=D^{\mu} A^{\nu}-D^{\nu} A^{\mu}
$$

- The gauge transformation phase factor

$$
\Omega(x)=e^{i \omega(x)}
$$

forms a group, the $\mathrm{U}(1)$ (1-dim. unitary) group. It has 1 dof, corresponds to 1 photon field

- We call this group an Abelian (commutative) group as

$$
\Omega(x) \Omega(y)=\Omega(y) \Omega(x)
$$

Gauge theories: Quantum electrodynamics

- The invariant Lagrangian under local gauge symmetry transformation is

$$
\mathscr{L}=-\frac{1}{\Lambda} F^{\mu \nu} F_{\mu \nu}-\bar{\psi} \gamma^{\mu}\left(\partial_{\mu}-i q A_{\mu}\right) \psi-m \bar{\psi} \psi
$$

-L Homework: Derive these equations by yourself.
Th

$$
F^{\mu \nu}=D^{\mu} A^{\nu}-D^{\nu} A^{\mu}
$$

- The gauge transformation phase factor

$$
\Omega(x)=e^{i \omega(x)}
$$

forms a group, the $\mathrm{U}(1)$ (1-dim. unitary) group. It has 1 dof, corresponds to 1 photon field

- We call this group an Abelian (commutative) group as

$$
\Omega(x) \Omega(y)=\Omega(y) \Omega(x)
$$

Gauge theories: Quantum electrodynamics

- We can rewrite the gauge transformation as
$\psi^{\prime}(x)=\Omega(x) \psi(x), \quad \bar{\psi}^{\prime}(x)=\Omega^{*}(x) \bar{\psi}(x), \quad A_{\mu}^{\prime}(x)=A_{\mu}(x)+i \Omega(x) \partial_{\mu} \Omega^{*}(x)$
- The covariant derivative acting on $\psi(x)$ transforms just like $\psi(x)$ itself

$$
D_{\mu}^{\prime} \psi^{\prime}(x)=\left[\partial_{\mu}-i q A_{\mu}^{\prime}(x)\right] \psi^{\prime}(x)=\Omega(x) D_{\mu} \psi(x)
$$

so that $\bar{\psi}^{\prime} \gamma^{\mu} D_{\mu}^{\prime} \psi^{\prime}=\bar{\psi} \gamma^{\mu} D_{\mu} \psi$ is gauge invariant

Natural to ask: What if the gauge transformation phase factor $\Omega(x)$ is not just a number?

Gauge theories: Quantum chromodynamics

- $\Omega(x)$ can be generalized to matrix-valued, which means we enlarge the symmetry group
-For example, the $\mathrm{U}(1)$ group in QED can be generalized to $\operatorname{SU}(3)$ (3-dim. special unitary), whose elements are 3×3 unitary matrices with determinant $1\left(3^{2}-1=8\right.$ dofs $)$

$$
\Omega(x)=e^{i \omega^{k}(x) t_{k}}
$$

- $t_{k}, k=1 \ldots .8$ are a complete set of Hermitian traceless 3×3 matrices, also called generators of the group (in a given representation), correspond to 8 gauge fields - gluons
Now $\Omega(x) \Omega(y) \neq \Omega(y) \Omega(x)$, it is called a non-Abelian group (Yang-Mills theory)

Gauge theories: Quantum chromodynamics

\bigcirc A standard choice: $t_{k}=1 / 2 \lambda_{k}$ with (σ_{i} are Pauli matrices)

$$
\left.\begin{array}{r}
\lambda_{i}=\left(\begin{array}{cc}
\sigma_{i} & \\
& 0 \\
0 & 0
\end{array}\right)
\end{array}\right), \text { for } i=1,2,3, \quad \lambda_{4}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \quad \lambda_{5}=\left(\begin{array}{ccc}
0 & 0 & -i \\
0 & 0 & 0 \\
i & 0 & 0
\end{array}\right), ~ \begin{aligned}
& 0 \\
& \lambda_{6}=\left(\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad \lambda_{7}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -i \\
0 & i & 0
\end{array}\right), \quad \lambda_{8}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -2
\end{array}\right),
\end{aligned}
$$

They satisfy

$$
\operatorname{Tr}\left(t_{k} t_{l}\right)=\frac{1}{2} \delta_{k l}, \quad\left[t_{k}, t_{l}\right]=i f_{k l m} t_{m}
$$

$-f_{k l m}$ are structure constants of the group, and are totally antisymmetric with respect to the interchange of any two indices

Gauge theories: Quantum chromodynamics

- Under the matrix-valued gauge transformation, the fermion field transforms as

$$
\psi(x) \rightarrow \psi^{\prime}(x)=\Omega(x) \psi(x), \quad \bar{\psi}(x) \rightarrow \bar{\psi}^{\prime}(x)=\bar{\psi}(x) \Omega^{\dagger}(x)
$$

- Which implies

$$
\bar{\psi}(x) \gamma^{\mu}\left(\partial_{\mu}+i g A_{\mu}\right) \psi(x) \rightarrow \bar{\psi}(x) \Omega^{\dagger}(x) \gamma^{\mu}\left(\partial_{\mu}+i g A_{\mu}^{\prime}\right) \Omega(x) \psi(x)
$$

For it to be invariant, we need

$$
A_{\mu}^{\prime}(x)=\Omega(x) A_{\mu}(x) \Omega^{\dagger}(x)+i\left(\partial_{\mu} \Omega(x)\right) \Omega^{\dagger}(x)
$$

- Analogous to QED, we can define the field strength

$$
F_{\mu \nu}(x)=D_{\mu} A_{\nu}(x)-D_{\nu} A_{\mu}(x)=\partial_{\mu} A_{\nu}(x)-\partial_{\nu} A_{\mu}(x)+i g\left[A_{\mu}(x), A_{\nu}(x)\right]
$$

- And thus the gauge part of QCD Lagrangian

$$
L_{g}=\frac{1}{2} \operatorname{Tr}\left[F^{\mu \nu}(x) F_{\mu \nu}(x)\right]
$$

Gauge theories: Quantum chromodynamics

- The gauge field can be decomposed in terms of color components (T_{i} is an appropriate matrix representation)

$$
\begin{aligned}
& A_{\mu}(x)=\sum_{i=1}^{8} A_{\mu}^{i}(x) T_{i} \\
& F_{\mu \nu}^{i}(x)=\partial_{\mu} A_{\nu}^{i}(x)-\partial_{\nu} A_{\mu}^{i}(x)-f_{i j k} A_{\mu}^{j}(x) A_{\nu}^{k}(x)
\end{aligned}
$$

- The Lagrangian becomes

$$
L_{g}=\frac{1}{4} \sum_{i=1}^{8} F^{\mu \nu, i}(x) F_{\mu \nu}^{i}(x)
$$

- It appears as 8 copies of QED gauge Lagrangian, but there is a crucial difference coming from $f_{i j k} A_{\mu}^{j}(x) A_{\nu}^{k}(x)$, it leads to cubic and quadratic gluon self-interactions

Gauge theories on the lattice

Gauge theories on the lattice

- Euclidean formulation of QFTs can be conveniently realized on a discrete lattice
- We need to discretize the

Lagrangian

- Discretized derivative

$$
\begin{aligned}
& \partial_{\mu} \psi(x) \rightarrow \frac{\psi(n+\hat{\mu})-\psi(n-\hat{\mu})}{2 a} \quad \text { A spacetime } \\
& \bar{\psi}(x) \partial_{\mu} \psi(x) \rightarrow \bar{\psi}(n) \sum_{\mu=1}^{4} \frac{\psi(n+\hat{\mu})-\psi(n-\hat{\mu})}{2 a}
\end{aligned}
$$

- Again, local gauge invariance dictates the existence of gauge fields and their transformation properties

Gauge theories on the lattice

\odot Under discrete gauge transformation

$$
\psi(n) \rightarrow \psi^{\prime}(n)=\Omega(n) \psi(n), \quad \bar{\psi}(n) \rightarrow \bar{\psi}^{\prime}(n)=\bar{\psi}(n) \Omega^{\dagger}(n)
$$

- We have
$\bar{\psi}(n) \psi(n+\hat{\mu}) \rightarrow \bar{\psi}^{\prime}(n) \psi^{\prime}(n+\hat{\mu})=\bar{\psi}(n) \Omega^{\dagger}(n) \Omega(n+\hat{\mu}) \psi(n+\hat{\mu}) \neq \bar{\psi}(n) \psi(n+\hat{\mu})$
Gauge non-invariance can be compensated if we introduce a field $U_{\mu}(n)$ to form a combination $\bar{\psi}(n) U_{\mu}(n) \psi(n+\hat{\mu})$ and let it transform as

$$
U_{\mu}(n) \rightarrow U_{\mu}^{\prime}(n)=\Omega(n) U_{\mu}(n) \Omega^{\dagger}(n+\hat{\mu})
$$

$\bigcirc U_{\mu}(n)$ links the fermion fields at different spacetime points, and thus is called a link variable

$$
U_{-\mu}(n+\hat{\mu})=U_{\mu}^{\dagger}(n)
$$

Gauge theories on the lattice

- Now we have a gauge-invariant expression

$$
\bar{\psi}(x) \partial_{\mu} \psi(x) \rightarrow \bar{\psi}(n) \sum_{\mu=1}^{4} \frac{U_{\mu}(n) \psi(n+\hat{\mu})-U_{-\mu}(n) \psi(n-\hat{\mu})}{2 a}
$$

- $U_{\mu}(n)$ plays the same role on the lattice as that the gauge field plays in the continuum, its continuum counterpart is the so-called gauge transporter

$$
U(x, y)=\mathcal{P} \exp \left[i \int_{C_{x, y}} d s^{\mu} A_{\mu}(s)\right]
$$

which connects fermions at different spacetime points x , y to form a gauge-invariant combination

- Its discrete version is (accurate to $\mathrm{O}(\mathrm{a})$)

$$
U_{\mu}(n)=e^{i a A_{\mu}(n)}
$$

and gives the continuum action in $a \rightarrow 0$ limit

Gauge theories on the lattice

- Euclidean formulation of QFTs can be conveniently realized on a discrete lattice

Gauge theories on the lattice

Gauge part of the action can be constructed from a closed loop formed by link variables, called a plaquette

$U_{\mu \nu}(n)=U_{\mu}(n) U_{\nu}(n+\hat{\mu}) U_{-\mu}(n+\hat{\mu}+\hat{\nu}) U_{-\nu}(n+\hat{\nu})=U_{\mu}(n) U_{\nu}(n+\hat{\mu}) U_{\mu}^{\dagger}(n+\hat{\nu}) U_{\nu}^{\dagger}(n)$
Then the gauge action can be constructed as (Wilson)

$$
S_{g}=\frac{2}{g^{2}} \sum_{n} \sum_{\mu<\nu} \operatorname{Re} \operatorname{Tr}\left[1-U_{\mu \nu}(n)\right]
$$

This is the first lattice formulation of QCD gauge action

Numerical Simulations

The path integral are evaluated approximately by N sample configurations $\left\{U_{n}\right\}$ with the distribution probability $\exp \left\{-S_{g}\left[U_{n}\right]\right\}$. An observable O is estimated as the average over the N configurations:

$$
\langle O\rangle=\frac{1}{N} \sum_{n} O\left[U_{n}\right]+O(1 / \sqrt{N})
$$

How to generate the configurations?

Numerical Simulations

Metropolis algorithm:

- Start from some configuration, choose a site n and a direction μ, change this link variable $U_{\mu}(n) \rightarrow U_{\mu}^{\prime}(n)$.
- Calculate the change of the action

$$
\Delta S=S\left(U_{\mu}^{\prime}(n)\right)-S\left(U_{\mu}(n)\right)=-\frac{\beta}{3} \operatorname{Re} \operatorname{tr}\left[\left(\mathrm{U}_{\mu}^{\prime}(\mathrm{n})-\mathrm{U}_{\mu}(\mathrm{n})\right) \mathrm{A}\right]
$$

- Accept the new variable $U_{\mu}^{\prime}(n)$ if $r<\exp (-\Delta S)$, where r is a random number uniformly distributed in $[0,1)$.
- Repeat these step from the beginning.

Numerical Simulations

- Heatbath

- The candidate link $U_{\mu}^{\prime}(n)$ is chosen according to its local probability:

$$
d P(U)=d U \exp \left(\frac{\beta}{3} \operatorname{Re} \operatorname{tr}[\mathrm{UA}]\right)
$$

- More efficient than metropolis, but suffers critical slowing down.
- Overrelaxation
- The candidate link is chosen such that the action is preserved. Such a change is always accepted.
- Not ergodic, must be used in combination with an ergodic algorithm such as Heatbath.

Numerical Simulations

```
<purgaug>
    <Cfg>
        <cfg_type>WEAK_FIELD</cfg_type> }\longrightarrow\mathrm{ Start from a slightly perturbed unit gauge
        <cfg_file>dummy</cfg_file>
    </Cfg>
    <MCControl>
        <RNG>
            <Seed>
                <elem>11</elem>
                <elem>0 </elem>
                <elem>0 </elem>
                Random seeds.
            <elem>0 </elem>
            </Seed>
        </RNG>
        <StartUpdateNum>0</StartUpdateNum>
        <NWarmUpUpdates>5000</NWarmUpUpdates> }\longrightarrow\mathrm{ Number of updates before equilibrium
        <NProductionUpdates>5000</NProductionUpdates>
        <NUpdatesThisRun>5000</NUpdatesThisRun>
        <SaveInterval>50</SaveInterval>
            \longrightarrow
        <SavePrefix>./beta6_xi3_2432_</SavePrefix>
        <SaveVolfmt>SINGLEFILE</SaveVolfmt>
    </MCControl>
```


Numerical Simulations

Numerical Simulations

