Pure gauge theory on the lattice

刘柳明(中国科学院近代物理研究所) & 张建辉(北京师范大学)

第三届格点数值量子场论训练营 2020.08.18-19

References

- Lancaster and Blundell, Quantum field theory for a gifted amateur, Oxford University Press.
- Peskin and Schroeder, An introduction to quantum field theory, Westview Press.
- Gattringer and Lang, Quantum chromodynamics on the lattice, Lect. Notes Phys. 788, 1 (2010).
- Smit, Introduction to quantum fields on a lattice: A robust mate, Cambridge Lect. Notes Phys. 15, 1 (2002).

Introduction to gauge theories

In classical mechanics, for a system consisting of a set of point masses, we have

$$L(q_i, \dot{q}_i) = T - V, \qquad S = \int dt L$$

Example : $L = \frac{1}{2}m\dot{q}^2 - V(q), \qquad S = \int_{t_1}^{t_2} dt L$

 Classical trajectory is determined by the requirement that the action is stationary

 $\delta S = 0$

Euler-Lagrange equation

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} = \frac{\partial L}{\partial q_i}$$

Example : $m\ddot{q} = -\partial V/\partial q$

In classical mechanics, for a system consisting of a set of point masses, we have

$$L(q_i, \dot{q}_i) = T - V, \qquad S = \left| dt L \right|$$

Homework: What if the Lagrangian contains higher-order derivatives?
Classical trajectory is determined by the requirement that the action is stationary

 $\delta S = 0$

Euler-Lagrange equation

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{q}_i} = \frac{\partial L}{\partial q_i}$$

Example : $m\ddot{q} = -\partial V/\partial q$

Concept of classical fields:

For a continuum system with infinite # of dof's and Lorentz symmetry, we can do the replacement

$$q_i \to \phi(x), \quad \dot{q}_i \to \partial_\mu \phi(x)$$

• The action has the form

$$S = \int dt L = \int d^4 x \mathscr{L}(\phi, \partial_\mu \phi), \qquad L = \int d^3 \overrightarrow{x} \mathscr{L}$$

Equation of motion

$$\delta S = 0 \to \partial_{\mu} \frac{\partial L}{\partial(\partial_{\mu}\phi)} = \frac{\partial L}{\partial\phi}$$

٦

NT

• Example 1:

$$\mathscr{L} = \mathscr{T} - \mathscr{V} = \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m^2 \phi^2 = \frac{1}{2} \dot{\phi}^2 - \frac{1}{2} (\overrightarrow{\nabla} \phi)^2 - \frac{1}{2} m^2 \phi^2$$

Equation of motion

$$(\partial^{\mu}\partial_{\mu} + m^2)\phi(x) = 0$$

which is nothing but the relativistic energy-mass relation

• Example 2:

$$\mathscr{L} = \frac{1}{2} (\partial_{\mu} \phi)^2 - \frac{1}{2} m^2 \phi^2 - \frac{1}{4} \lambda \phi^4$$

the last term has the form of Higgs potential, and is important for spontaneous symmetry breaking

Quantum theory (path integral perspective):

 In quantum mechanics, for a particle propagating from A to B all paths are allowed, and have to be summed up, but with a weight factor e^{iS/ħ}

$$\langle q_B, t_B | q_A, t_A \rangle =$$

 $N \int \mathscr{D}q \exp\left[i \int_{t_A}^{t_B} L(q, \dot{q}) dt\right] \xrightarrow{\text{sogg}} A^{\bullet}$
 A^{\bullet}
 T time, t

 Contribution of different paths cancels out except near the stationary phase leads to the classical trajectory

Quantum theory (path integral perspective):

In quantum field theory, for a particle (antiparticle) propagating from A to B all paths are allowed, and have to be summed up, but with a weight factor e^{iS/ħ}

$$\langle T\phi(x_B)\phi(x_A)\rangle = \int \mathcal{D}\phi \phi(x_B)\phi(x_A) \exp\left[i\int d^4x \mathcal{L}(\phi)\right]^{\frac{1}{2}} \int d^4x \mathcal{L}(\phi)$$

This functional integral is complex and strongly oscillating, difficult to give it a satisfactory mathematical meaning

time, ι

Euclidean formulation

This can be resolved by going to imaginary time or to Euclidean spacetime

 $t \to -it_E, \quad \exp[iS] \to \exp[-S_E]$

- The Euclidean path integral becomes real and bounded from above, if the potential is bounded from below
- Numerical calculations and theoretical analysis become much easier, similarity with statistical physics
- Sufficient to extract most physical information, can also be analytically continued back to real time (Minkowski spacetime) if needed (for analytic calculations)

Euclidean formulation

 In analogy with statistical physics, physical observables are evaluated as

$$\langle O \rangle = \frac{1}{Z} \int \mathscr{D}\phi O \exp\left[-S_E\right]$$

• The partition function

$$Z = \int \mathscr{D}\phi \, \exp\left[-S_E\right]$$

• Example 1:

$$S_E = \int d^4 x_E \left[\frac{1}{2} (\partial_{\mu} \phi)^2 + \frac{1}{2} m^2 \phi^2 \right]$$

From here on, the discussions will be in Euclidean spacetime

Electric and magnetic fields are described by a 4-vector

$$A^{\mu} = (\varphi, \overrightarrow{A})$$

• The field strength is

$$F^{\mu\nu} = \partial^{\mu}A^{\nu} - \partial^{\nu}A^{\mu}$$

A QED Lagrangian shall contain both electrons and photons, we can begin with

$$\mathscr{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \bar{\psi} \gamma^{\mu} \partial_{\mu} \psi - m \bar{\psi} \psi$$

It leads to free EOMs for electrons and photons, the former is Dirac equation, the relativistic analogue of Schroedinger equation in quantum mechanics
How does the interaction enter?

The Lagrangian is invariant under a global symmetry transformation

 $\psi'(x) = e^{i\omega q}\psi(x), \quad \bar{\psi}'(x) = e^{-i\omega q}\bar{\psi}(x), \quad A'_{\mu}(x) = A_{\mu}(x)$

with ω a constant and q the charge of the electron

However, electron fields at different spacetime points shall be able to transform differently with

 $\omega = \omega(x)$

then the global symmetry becomes local

• $m\bar{\psi}\psi$ is still invariant, but $\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi$ is not. The Lagrangian can be made invariant if we replace

$$\partial_{\mu}\psi \rightarrow D_{\mu}\psi = (\partial_{\mu} - iqA_{\mu})\psi$$
 with $A'_{\mu}(x) = A_{\mu}(x) + \partial_{\mu}\omega(x)$

The invariant Lagrangian under local gauge symmetry transformation is

$$\mathscr{L} = -\frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \bar{\psi} \gamma^{\mu} (\partial_{\mu} - iqA_{\mu}) \psi - m\bar{\psi} \psi$$

Local gauge symmetry dictates interactions
The field strength can also be written as

$$F^{\mu\nu} = D^{\mu}A^{\nu} - D^{\nu}A^{\mu}$$

The gauge transformation phase factor

$$\Omega(x) = e^{i\omega(x)}$$

forms a group, the U(1) (1-dim. unitary) group. It has 1 dof, corresponds to 1 photon field

• We call this group an Abelian (commutative) group as $\Omega(x)\Omega(y) = \Omega(y)\Omega(x)$

The invariant Lagrangian under local gauge symmetry transformation is

$$\mathscr{L} = -\frac{1}{\Lambda} F^{\mu\nu} F_{\mu\nu} - \bar{\psi} \gamma^{\mu} (\partial_{\mu} - iqA_{\mu}) \psi - m\bar{\psi} \psi$$

L Homework: Derive these equations by yourself.
 The second s

$$F^{\mu\nu} = D^{\mu}A^{\nu} - D^{\nu}A^{\mu}$$

• The gauge transformation phase factor

$$\Omega(x) = e^{i\omega(x)}$$

forms a group, the U(1) (1-dim. unitary) group. It has 1 dof, corresponds to 1 photon field

• We call this group an Abelian (commutative) group as $\Omega(x)\Omega(y) = \Omega(y)\Omega(x)$

• We can rewrite the gauge transformation as

 $\psi'(x) = \Omega(x)\psi(x), \quad \bar{\psi}'(x) = \Omega^*(x)\bar{\psi}(x), \quad A'_{\mu}(x) = A_{\mu}(x) + i\Omega(x)\partial_{\mu}\Omega^*(x)$

• The covariant derivative acting on $\psi(x)$ transforms just like $\psi(x)$ itself

$$D'_{\mu}\psi'(x) = [\partial_{\mu} - iqA'_{\mu}(x)]\psi'(x) = \Omega(x)D_{\mu}\psi(x)$$

so that $\bar{\psi}'\gamma^{\mu}D'_{\mu}\psi' = \bar{\psi}\gamma^{\mu}D_{\mu}\psi$ is gauge invariant

• Natural to ask: What if the gauge transformation phase factor $\Omega(x)$ is not just a number?

- Ω(x) can be generalized to matrix-valued, which means we enlarge the symmetry group
- For example, the U(1) group in QED can be generalized to SU(3) (3-dim. special unitary), whose elements are 3x3 unitary matrices with determinant 1 ($3^2 - 1 = 8$ dofs) $\Omega(x) = e^{i\omega^k(x)t_k}$
- *t_k*, *k* = 1...8 are a complete set of Hermitian traceless 3x3 matrices, also called generators of the group (in a given representation), correspond to 8 gauge fields gluons
 Now Ω(*x*)Ω(*y*) ≠ Ω(*y*)Ω(*x*), it is called a non-Abelian group (Yang-Mills theory)

• A standard choice: $t_k = 1/2\lambda_k$ with (σ_i are Pauli matrices)

$$\lambda_{i} = \begin{pmatrix} \sigma_{i} & 0 \\ 0 & 0 & 0 \end{pmatrix}, \text{ for } i = 1, 2, 3, \quad \lambda_{4} = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad \lambda_{5} = \begin{pmatrix} 0 & 0 & -i \\ 0 & 0 & 0 \\ i & 0 & 0 \end{pmatrix}$$
$$\lambda_{6} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}, \quad \lambda_{7} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}, \quad \lambda_{8} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

,

They satisfy

$$\operatorname{Tr}(t_k t_l) = \frac{1}{2} \delta_{kl}, \quad [t_k, t_l] = i f_{klm} t_m$$

• f_{klm} are structure constants of the group, and are totally antisymmetric with respect to the interchange of any two indices

• Under the matrix-valued gauge transformation, the fermion field transforms as

 $\psi(x) \to \psi'(x) = \Omega(x)\psi(x), \quad \bar{\psi}(x) \to \bar{\psi}'(x) = \bar{\psi}(x)\Omega^{\dagger}(x)$

• Which implies

 $\bar{\psi}(x)\gamma^{\mu}(\partial_{\mu}+igA_{\mu})\psi(x)\rightarrow\bar{\psi}(x)\Omega^{\dagger}(x)\gamma^{\mu}(\partial_{\mu}+igA_{\mu}')\Omega(x)\psi(x)$

• For it to be invariant, we need

 $A'_{\mu}(x) = \Omega(x)A_{\mu}(x)\Omega^{\dagger}(x) + i(\partial_{\mu}\Omega(x))\Omega^{\dagger}(x)$

Analogous to QED, we can define the field strength
F_{µν}(x) = D_µA_ν(x) - D_νA_µ(x) = ∂_µA_ν(x) - ∂_νA_µ(x) + ig[A_µ(x), A_ν(x)]
And thus the gauge part of QCD Lagrangian

$$L_g = \frac{1}{2} \operatorname{Tr}[F^{\mu\nu}(x)F_{\mu\nu}(x)]$$

• The gauge field can be decomposed in terms of color components (T_i is an appropriate matrix representation)

 $A_{\mu}(x) = \sum_{i=1}^{8} A_{\mu}^{i}(x)T_{i}$ $F_{\mu\nu}(x) = \sum_{i=1}^{8} F_{\mu\nu}^{i}(x)T_{i}, \quad F_{\mu\nu}^{i}(x) = \partial_{\mu}A_{\nu}^{i}(x) - \partial_{\nu}A_{\mu}^{i}(x) - f_{ijk}A_{\mu}^{j}(x)A_{\nu}^{k}(x)$ The Lagrangian becomes 1^{8}

$$L_g = \frac{1}{4} \sum_{i=1}^{8} F^{\mu\nu,i}(x) F^i_{\mu\nu}(x)$$

• It appears as 8 copies of QED gauge Lagrangian, but there is a crucial difference coming from $f_{ijk}A^j_{\mu}(x)A^k_{\nu}(x)$, it leads to cubic and quadratic gluon self-interactions

- Euclidean formulation of QFTs can be conveniently realized on a discrete lattice
- We need to discretize the Lagrangian
- Discretized derivative

$$\begin{array}{l} \partial_{\mu}\psi(x) \rightarrow \frac{\psi(n+\hat{\mu}) - \psi(n-\hat{\mu})}{2a} & \text{A spacetime point is characterized by} \\ na = (n_1, n_2, n_3, n_4)a \\ \bar{\psi}(x)\partial_{\mu}\psi(x) \rightarrow \bar{\psi}(n) \sum_{\mu=1}^{4} \frac{\psi(n+\hat{\mu}) - \psi(n-\hat{\mu})}{2a} \end{array}$$

 Again, local gauge invariance dictates the existence of gauge fields and their transformation properties

• Under discrete gauge transformation

 $\psi(n) \to \psi'(n) = \Omega(n)\psi(n), \quad \bar{\psi}(n) \to \bar{\psi}'(n) = \bar{\psi}(n)\Omega^{\dagger}(n).$ \bigcirc We have

 $\bar{\psi}(n)\psi(n+\hat{\mu}) \to \bar{\psi}'(n)\psi'(n+\hat{\mu}) = \bar{\psi}(n)\Omega^{\dagger}(n)\Omega(n+\hat{\mu})\psi(n+\hat{\mu}) \neq \bar{\psi}(n)\psi(n+\hat{\mu})$

• Gauge non-invariance can be compensated if we introduce a field $U_{\mu}(n)$ to form a combination $\bar{\psi}(n)U_{\mu}(n)\psi(n+\hat{\mu})$ and let it transform as

 $U_{\mu}(n) \rightarrow U'_{\mu}(n) = \Omega(n)U_{\mu}(n)\Omega^{\dagger}(n+\hat{\mu})$

• $U_{\mu}(n)$ links the fermion fields at different spacetime points, and thus is called a link variable

$$U_{-\mu}(n+\hat{\mu}) = U_{\mu}^{\dagger}(n)$$

• Now we have a gauge-invariant expression

$$\bar{\psi}(x)\partial_{\mu}\psi(x) \to \bar{\psi}(n)\sum_{\mu=1}^{4}\frac{U_{\mu}(n)\psi(n+\hat{\mu}) - U_{-\mu}(n)\psi(n-\hat{\mu})}{2a}$$

• $U_{\mu}(n)$ plays the same role on the lattice as that the gauge field plays in the continuum, its continuum counterpart is the so-called gauge transporter

$$U(x,y) = \mathcal{P} \exp\left[i \int_{C_{x,y}} ds^{\mu} A_{\mu}(s)\right]$$

which connects fermions at different spacetime points x, y to form a gauge-invariant combination

• Its discrete version is (accurate to O(a))

$$U_{\mu}(n) = e^{iaA_{\mu}(n)}$$

and gives the continuum action in $a \rightarrow 0$ limit

Euclidean formulation of QFTs can be conveniently realized on a discrete lattice

Gauge part of the action can be constructed from a closed loop formed by link variables, called a plaquette

 $U_{\mu\nu}(n) = U_{\mu}(n)U_{\nu}(n+\hat{\mu})U_{-\mu}(n+\hat{\mu}+\hat{\nu})U_{-\nu}(n+\hat{\nu}) = U_{\mu}(n)U_{\nu}(n+\hat{\mu})U_{\mu}^{\dagger}(n+\hat{\nu})U_{\nu}^{\dagger}(n)$

• Then the gauge action can be constructed as (Wilson)

$$S_g = \frac{2}{g^2} \sum_n \sum_{\mu < \nu} \operatorname{Re} \operatorname{Tr}[1 - U_{\mu\nu}(n)]$$

This is the first lattice formulation of QCD gauge action

The path integral are evaluated approximately by N sample configurations $\{U_n\}$ with the distribution probability $\exp\{-S_g[U_n]\}$. An observable *O* is estimated as the average over the N configurations:

$$\langle O \rangle = \frac{1}{N} \sum_{n} O[U_n] + \mathcal{O}(1/\sqrt{N})$$

How to generate the configurations?

Metropolis algorithm:

- Start from some configuration, choose a site *n* and a direction μ, change this link variable U_μ(n) → U'_μ(n).
- Calculate the change of the action $\Delta S = S(U'_{\mu}(n)) - S(U_{\mu}(n)) = -\frac{\beta}{3} \operatorname{Re} \operatorname{tr}[(U'_{\mu}(n) - U_{\mu}(n))A].$
- Accept the new variable U'_μ(n) if r < exp(-ΔS), where r is a random number uniformly distributed in [0,1).
- Repeat these step from the beginning.

• Heatbath

• The candidate link $U'_{\mu}(n)$ is chosen according to its local probability: β

$$dP(U) = dUexp(\frac{\beta}{3}\text{Re tr[UA]})$$

• More efficient than metropolis, but suffers critical slowing down.

Overrelaxation

• The candidate link is chosen such that the action is preserved. Such a change is always accepted.

• Not ergodic, must be used in combination with an ergodic algorithm such as Heatbath.

