Pure gauge theory on the lattice
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Infroduction to gauge theories



Lagrangian formalism

~In classical mechanics, for a system consisting of a set of
point masses, we have

1 g
Example : L = quz — V(g), S = [ dt L

I
o Classical trajectory i1s determined by the requirement
that the action 1s stationary

o Euler-Lagrange equation §
d oL oL ’
EE — a ; : = time, ¢
1 l

Example : mg = — 0dV/oq



Lagrangian formalism

~In classical mechanics, for a system consisting of a set of
point masses, we have

Homework: What if the Lagrangian contains

higher-order derivatives?

that the action 1s stationary

55 =0 )
o Euler-Lagrange equation feg;
d oL oL ’
EE = E ; = time, ¢

Example : mg = — 0dV/oq



Lagrangian formalism

- Concept of classical fields:
Q0
Q9 9

~For a continuum system with infinite # of dof’s and
Lorentz symmetry, we can do the replacement

Qi — ¢(X), Qi — a,u¢(x)
~The action has the form

S = JdtL - [d4x3(q§, 04, L= Jd373

~ Equation of motion

50— 0 o 3 oL oL
— —_ u—
Yo(0,) 0




Lagrangian formalism

-~ Example 1:

1 1 1., 1 = 1
P =TT —Y =—(0 ) ——=m2p? = —d* — —(V d)? — —m2p*>
2( D) 2m¢ 245 2( &) 2mq§

- Equation of motion

(040, + m*)p(x) = 0

which 1s nothing but the relativistic energy-mass relation

o Example 2:

1 1 1
P = —(0 ) — —mPP? — —i*

the last term has the form of Higgs potential, and is
important for spontaneous symmetry breaking



Lagrangian formalism

-~ Quantum theory (path integral perspective):

~ In quantum mechanics, for a particle propagating from

A to B all paths are allowed, and have to be summed up,
but with a weight factor ¢*/"

A

(qp -t qa, ty) =

Ig
NJSZQ exp H L(g. c'])dt]
fa A

space, T

 time, ¢
0 T

~ Contribution of different paths cancels out except near
the stationary phase leads to the classical trajectory



Lagrangian formalism

-~ Quantum theory (path integral perspective):

~ In quantum field theory, for a particle (antiparticle)

propagating from A to B all paths are allowed, and have
to be summed up, but with a weight factor ¢

(Thp(xp)p(xy)) =
N J% P(xp)p(x,) exp [i Jd4x5f (cb)] c

space, X

A

t % = time, ¢

0 T |

~This functional integral 1s complex and strongly
oscillating, difficult to give it a satisfactory mathematical

meaning



Euclidean formulation

~This can be resolved by going to imaginary time or to
Euclidean spacetime
I — —itg, expliS] — exp[—S;]

~The Euclidean path integral becomes real and bounded
from above, if the potential 1s bounded from below

~Numerical calculations and theoretical analysis become
much easier, similarity with statistical physics

o Sufficient to extract most physical information, can also
be analytically continued back to real time (Minkowski
spacetime) 1f needed (for analytic calculations)



Euclidean formulation

~In analogy with statistical physics, physical observables
are evaluated as

1
(0) = E[gngo exp[ - SE]
~ The partition function
Z = JQZ¢ eXp[ - SE]
o Example 1:
1 1
N 7 2, 242
S, = Jd xE[2(6M¢) +—m’ ]

~ From here on, the discussions will be in Euclidean
spacetime



Gauge theories: Quantum elecirodynamics

o Electric and magnetic fields are described by a 4-vector

AF = (p, A)
~The field strength 1s
Fr = gfAY — 9P A

> A QED Lagrangian shall contain both electrons and
photons, we can begin with

1 _ _
Z == 77w = Wy — mpy

~It leads to free EOMs for electrons and photons, the
former 1s Dirac equation, the relativistic analogue of
Schroedinger equation in quantum mechanics

~How does the interaction enter?



Gauge theories: Quantum elecirodynamics

~The Lagrangian 1s invariant under a global symmetry
transformation
y'(x) = ey (x), W'x)=eNp(x), A (x) =A,x)
with o a constant and q the charge of the electron

~However, electron fields at different spacetime points
shall be able to transform differently with
o = w(x)
then the global symmetry becomes local
o myy 1s still invariant, but wy*o,w 1s not. The Lagrangian
can be made invariant if we replace

dw—> Dy =(@0,—iqA )y with A/(x)=A,(x)+ d,w(x)



Gauge theories: Quantum elecirodynamics

~The 1nvariant Lagrangian under local gauge symmetry
transformation 1s

1 _ . _
Z == e WE,,—wy*(0,~igA yy—miy

oLocal gauge symmetry dictates interactions
~The field strength can also be written as
F* = DAY — DY A¥
~The gauge transformation phase factor
Q(x) = e'®W
forms a group, the U(1) (1-dim. unitary) group. It has 1
dof, corresponds to 1 photon field

- We call this group an Abelian (commutative) group as
Qx)€2(y) = Q(y)(x)



Gauge theories: Quantum elecirodynamics

~'The invariant Lagrangian under local gauge symmetry
transformation 1s

1 _ . _
Z = ——F"F, —yy"(0,—igA y—mypy

oL{Homework: Derive these equations by yourselfj
oT :L“y___#_f —

F* = DAY — DY A¥
~The gauge transformation phase factor
Q(x) = '™
forms a group, the U(1) (1-dim. unitary) group. It has 1
dof, corresponds to 1 photon field

- We call this group an Abelian (commutative) group as
Qx)€2(y) = Q(y)(x)



Gauge theories: Quantum elecirodynamics

- We can rewrite the gauge transformation as

p(x) = Qy(x), w'x) =Q*0)px), A,x) =A,x)~+i8(x)d,Q2%(x)

~'The covariant derivative acting on y(x) transforms just
like w(x) itself

Dy () = [9, — igA,()ly'() = Q)D,y(x)

so that y'y*Dy’ = wy"D,y is gauge invariant

~Natural to ask: What 1f the gauge transformation phase
factor €(x) 1s not just a number?



Gauge theories: Quantum chromodynamics

~ Q(x) can be generalized to matrix-valued, which means
we enlarge the symmetry group

- For example, the U(1) group in QED can be generalized
to SU(3) (3-dim. special unitary), whose elements are
3x3 unitary matrices with determinant 1 (3% — 1 = 8 dofs)

Q(x) = el @
o t, k=1...8 are a complete set of Hermitian traceless 3x3

matrices, also called generators of the group (in a given
representation), correspond to 8 gauge fields - gluons

o Now Q(x)Q(y) # Q(y)Q(x), 1t 1s called a non-Abelian group
(Yang-Mills theory)



Gauge theories: Quantum chromodynamics

~ A standard choice: 7, = 1/24;, with (o; are Pauli matrices)
0 0 0 —2
0 . Ag 0 O :
0 1 0
0 1 0
= 0 1
V3o o

1 .
Tr(z1) = 55kla [t 1] = gt

OO =

I
R
o 2
-

o O O
v
5“
=
~.
|
=
[\3
C«O
>
TSN
|
7
_0 O

0
0
1

_— O O
o = O
\/
7\
o OO

~They satisty

© Jum are structure constants of the group, and are totally
antisymmetric with respect to the interchange of any two

indices



Gauge theories: Quantum chromodynamics

- Under the matrix-valued gauge transformation, the
fermion field transforms as
P(a) = ¢ () = Qa)p(x), () = ' (x) = P(2)Q (z)

© Which implies

(@) (O + igAp)y () = P(@)Q (2)7" (8 + ig A} ) U) (x)
_ For it to be invariant, we need

Ay () = Q) Au(2)Q1 (2) +i(9,9(2))Q ()

o Analogous to QED, we can define the field strength
Fuy(v) = DpAy(z) = Dy Ap(z) = 0uAu(x) — 0, Ap() +1g[Au(z), Au ()]
- And thus the gauge part of QCD Lagrangian

Ly = 5 Tx{F™ (2) Fyu (x)



Gauge theories: Quantum chromodynamics

~The gauge field can be decomposed in terms of color
components (7; 1s an appropriate matrix representation)
8

8 A = ) AT,
. . =1 . .
F @) =) Fi0T, Fi(x) =0,Alx) — 0,Alx)—f,; Al()ALx)

- The Lagrangian becomes
I
Ly=- Z Fri(x)F: (x)
i=1

_It appears as 8 copies of QED gauge Lagrangian, but
there is a crucial difference coming from f,; A/ (x)A(x), it

leads to cubic and quadratic
gluon self-interactions %



Gauge theories on the lattice



Gauge theories on the lattice

~Euclidean formulation of QFTs can be conveniently
realized on a discrete lattice

- We need to discretize the
Lagrangian

_Discretized derivative

Hz/)( T) — Yin+ i) =y = p) A spacetime point is characterized by
2a

na = (ny,n,, N3, Nny)a
1

Ba)i(a) - b(n) Y AT LZE )

pn=1

o Again, local gauge invariance dictates the existence of
gauge fields and their transformation properties



Gauge theories on the lattice
o Under discrete gauge transformation

P(n) = ¢'(n) = Qn)Y(n), Y(n) — P (n) =P(n)Q(n)
- We have

P(n)(n+ i) = P (n)Y (n+ i) = P(n)QT(n)Qn + @)Y (n + ) # Y(n)y(n + f)

- Gauge non-invariance can be compensated if we
introduce a field U (n) to form a combination
w(n)U (my(n + 1) and let 1t transform as

U(n) = U,y (n) = Qn)U,(n)Q (n + f1)
© U,(n) links the fermion fields at different spacetime
points, and thus 1s called a link variable

;+ - hﬂ% U_,n+ i) = Ujn)




Gauge theories on the lattice

~Now we have a gauge-invariant expression

- 7 N
@(x)ﬁﬂw(x) — LE(n) Z Up(n)y(n + f1) ;aU—#(n)w(n — 1)

pu=1
~ U,(n) plays the same role on the lattice as that the gauge
field plays in the continuum, its continuum counterpart
1s the so-called gauge transporter

U(z,y) = P exp [z/

ds’“’A#(s)]
Caz,y

which connects fermions at different spacetime points x,
y to form a gauge-invariant combination

> Its discrete version 1s (accurate to O(a))
UM(I’Z) — eiaAﬂ(n)

and gives the continuum action in a — 0 limit



Gauge theories on the lattice

~Euclidean formulation of QFTs can be conveniently
realized on a discrete lattice




Gauge theories on the lattice

- Gauge part of the action can be constructed from a
closed loop formed by link variables, called a plaquette

n+ v Uu(n+v) n+p+v
4 4

lr,,(n)A Q A(’“(”*“)

II—T (,'“t(”) T_H - [

U (n) =Uu(n)Uy(n+ @)U—p(n+ i+ 0)U—_p(n+0) = Uy(n)Uy(n + ﬂ)UJ(n + ’D)Uj(n)

~Then the gauge action can be constructed as (Wilson)

Sg = gQ_QZ Z Re Tr[1 — U, (n)]

n uv

~'This 1s the first lattice formulation of QCD gauge action



Numerical Simulations

The path integral are evaluated approximately by N
sample configurations {U,} with the distribution
probability exp{—S,[U,]}. An observable O is

estimated as the average over the N configurations:

(0) = %2 O[U,] + 6(1/4/N)

How to generate the configurations?




Numerical Simulations

Metropolis algorithm:

e Start from some configuration, choose a site n and a direction p,
change this link variable U (n) — U, (n).

e (Calculate the change of the action

AS = S(U(n)) — S(U,(n)) = - §Re t[(U(n) — U, (m)A.

o Accept the new variable U, (n) if

r < exp(—AS), where r is a random
number uniformly distributed in
[0,1).

e Repeat these step from the
beginning.




Numerical Simulations

e Heatbath

* The candidate link U)(n) is chosen according to its local
probability: B
dP(U) = dUexp(gRe tr[UA])

* More efficient than metropolis, but suffers critical slowing down.

e Overrelaxation
e The candidate link is chosen such that the action is preserved.
Such a change 1s always accepted.

e Not ergodic, must be used in combination with an ergodic
algorithm such as Heatbath.



Numerical Simulati

<purgaug>
<Cfg>
<cfg_type>WEAK_FIELD</cfg_type>——
<cfg_file>dummy</cfg_file>
</Cfg>

<MCControl>
<RNG>
<Seed>
<elem>1l</elem>

ons

Start from a slightly perturbed unit gauge

v

<elem>0 </elem>
<elem>0 </elem>

Random seeds.

<elem>0 </elem>
</Seed>
</RNG>

<StartUpdateNum>0</StartUpdateNum>

<NWarmUpUpdates=>5000</NwarmlpUpdates> —» | Number of updates before equilibrium
<NProductionUpdates>5000</NProductionUpdates>

<NUpdatesThisRun>5000</NUpdatesThisRun>

<Savelnterval>50</Savelnterval>

<SavePrefix>./beta6_xi3_2432_</SaveP
<SaveVolfmt>SINGLEFILE</SaveVolfmt>
</MCControl>

» | Autocorrelation length

refix>



Numerical Simulations

<HBItr>
<GaugeAction>

<beta>6.0</beta>-~\\\‘\\\\\$

<AnisoParam>
<anisoP>false</anisoP>
<t_dir>3</t_dir>
<xi_0>1.0</xi_0>
<nu>1.0</nu>

</AnisoParam>

<GaugeState>
<Name>SIMPLE_GAUGE_STATE</Name>
<GaugeBC>

p value

<Name>PERIODIC_GAUGEBC</Name> ——M» Boundary condition

</GaugeBC>
</GaugeState>
</GaugeAction>

<HBParams> _
<nOver>3</n0ver> > Number of Overrelaxation sweeps

<NmaxHB>1</NmaxHB>-\\\\\\\\\\\$
</HBParams>

<nrow>24 24 24 32</nrow>
</HBItr>

</purgaug>

Number of Heatbath sweeps

Lattice size




Numerical Simulations
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