### 桂龙成(湖南师范大学)

### 格点训练营,08/13/20

### Outline

# Wilson Loop What is Wilson Loop Physical interpretation of the Wilson loop Calculation The static quark potential fit the static potential Autocorrelation Error Estimate exercise

- After we have produced the pure gauge configurations, we can make some physical measurements on these configurations.
- A Wilson loop W<sub>L</sub> is made from four pieces, two so-called Wilson lines S(m,n,n<sub>t</sub>), S(m,n,0), and two temporal transporters T(n,n<sub>t</sub>), T(m,n<sub>t</sub>).

• The Wilson line  $S(\mathbf{m}, \mathbf{n}, n_t)$  connects the two spatial points  $\mathbf{m}$  and  $\mathbf{n}$  along some path  $C_{m,n}$  with all link variables restricted to time argument  $n_t$ ,

$$S(\boldsymbol{m},\boldsymbol{n},n_t) = \prod_{(\boldsymbol{k},j)\in\mathcal{C}_{m,n}} U_j(\boldsymbol{k},n_t).$$
(1)

 The temporal transporter T(n,n<sub>t</sub>) is a straight line of n<sub>t</sub> link variables in time direction, all situated at spatial position n,

$$T\left(oldsymbol{n},n_{t}
ight)=\prod_{j=0}^{n_{t}-1}U_{4}(oldsymbol{n},j).$$

(2)

0 0

 $\circ\,$  Attaching the four pieces to each other gives a closed loop  $\mathcal{L},$ 

$$\mathcal{L}: \quad (\boldsymbol{m}, n_t) \stackrel{S}{\longrightarrow} (\boldsymbol{n}, n_t) \stackrel{T^{\dagger}}{\longrightarrow} (\boldsymbol{n}, 0) \stackrel{S^{\dagger}}{\longrightarrow} (\boldsymbol{m}, 0) \stackrel{T}{\longrightarrow} (\boldsymbol{m}, n_t).$$

 $\circ\,$  The Wilson loop WL is obtained by taking the trace,

$$W_{\mathcal{L}}[U] = \operatorname{tr} \left[ S\left(\boldsymbol{m}, \boldsymbol{n}, n_t \right) T\left(\boldsymbol{n}, n_t \right)^{\dagger} S(\boldsymbol{m}, \boldsymbol{n}, 0)^{\dagger} T\left(\boldsymbol{m}, n_t \right) \right] \quad (4)$$
$$= \operatorname{tr} \left[ \prod_{(k,\mu)\in\mathcal{L}} U_{\mu}(k) \right] \quad (5)$$

 If the piece of loop C<sub>m,n</sub>used in S(m,n,n<sub>t</sub>) is a straight line we speak of a planar Wilson loop.Otherwise the Wilson loop is called nonplanar.

0 0 0 0

(3)



Figure 1: Examples for a planar (left-hand side plot) and a nonplanar (right-hand side) Wilson loop. The horizontal direction is time

### Outline

# Wilson Loop What is Wilson Loop Physical interpretation of the Wilson loop Calculation The static quark potential fit the static potential Autocorrelation Error Estimate exercise

### Physical interpretation of the Wilson loop

 $\circ~$  Due to the gauge symmetry, We can choice a gauge for gauge field  $A_{\mu}(x)$ 

$$A_4(x) = 0,$$

 i.e., temporal gauge. So the temporal transporters become trivial,

$$T(\boldsymbol{n}, n_t) = \prod_{j=0}^{n_t-1} U_4(\boldsymbol{n}, j) = \boldsymbol{k},$$

we obtain the following chain of identities

 $\left\langle W_{\mathcal{L}} \right\rangle = \left\langle W_{\mathcal{L}} \right\rangle_{\mathsf{temp}} = \left\langle \mathsf{tr} \left[ S\left(\boldsymbol{m},\boldsymbol{n},n_t\right) S(\boldsymbol{m},\boldsymbol{n},0)^{\dagger} \right] \right\rangle_{\mathsf{temp}},$ 

(8)

0 0 0 0

(6)

(/

The temporal gauge used in (8) makes explicit that the Wilson loop is the correlator of two Wilson lines S(m,n,n<sub>t</sub>) and S(m,n,0) situated at time slices n<sub>t</sub> and 0. Thus we can interpret this correlator using the equation

$$\lim_{T \to \infty} \left\langle O_2(t) O_1(0) \right\rangle_T = \sum_n \left\langle 0 \left| \widehat{O}_2 \right| n \right\rangle \left\langle n \left| \widehat{O}_1 \right| 0 \right\rangle \mathbf{e}^{-tE_n}$$

 where we inserting the unit operator of the vectors of a complete orthonormal basis as

$$\mathbb{H} = \sum_{n} |e_n\rangle \langle e_n|$$

in the left-hand side of the equation.

 The correlator behaves for large total temporal extent T of our Euclidean lattice as (a, b are summed)

$$\left\langle \mathsf{tr}\left[S\left(oldsymbol{m},oldsymbol{n},n,n_{t}
ight)S(oldsymbol{m},oldsymbol{n},0)^{\dagger}
ight]
ight
angle _{\mathsf{temp}}=\sum_{i}\left\langle 0\left|\widehat{S}(oldsymbol{m},oldsymbol{n})_{ab}
ight|k
ight
angle$$

 $ig \langle k \left| \widehat{S}(oldsymbol{m},oldsymbol{n})^{\dagger}_{ba} 
ight| 0 ig oldsymbol{e}^{-tE_k}$  (10)

where the Euclidean time argument t is related to  $n_t$ via  $t = a n_t$  with a being the lattice spacing. The sum in (9) runs over all states  $|k\rangle$  that have a non-vanishing overlap with  $\hat{S}(\mathbf{m}, \mathbf{n})^{\dagger}|0\rangle$ 

0 0 0

(9)

- the states |k⟩ with non-vanishing overlap are states describing a static quark–antiquark pair located at spatial positions m and n.
- The energy E<sub>1</sub> is thus identified with the energy of the quark-antiquark pair, which is the static potential V(r) at spatial quark separation r,

$$E_1 = V(r)$$
 with  $r = a |oldsymbol{m} - oldsymbol{n}|$  (11)

• Combining (8), (9), and (11) we obtain  $\langle W_{\mathcal{L}} \rangle \propto e^{-tV(r)} \left(1 + \mathcal{O}\left(e^{-t\Delta E}\right)\right) = e^{-n_t aV(r)} \left(1 + \mathcal{O}\left(e^{-n_t a\Delta E}\right)\right)$ 

 $\circ~$  Thus we find that we can calculate the static quarkantiquark potential from the large- $n_t$  behavior of the Wilson loop. The corrections in (12) are exponentially suppressed, where  $\Delta E$  is the difference between V(r)and the first excited energy level of the quarkantiquark pair.

0 0

(12)

### planar and nonplanar

- The Wilson loops we have introduced are not necessarily planar, but also nonplanar.
- Both loops have n = 5 (the horizontal direction is time). The planar loop has r = 3a, the nonplanar loop has  $r = \sqrt{3^2 + 1}a = \sqrt{10}a$ .
- Thus with nonplanar Wilson loops we can calculate the potential V(r) not only at distances r that are integer multiples of a, but also at intermediate points.
- Nonplanar Wilson loops also allow one to study whether rotational invariance is eventually restored when approaching the continuum limit.

0 0 0

### Outline

# Wilson Loop What is Wilson Loop Physical interpretation of the Wilson loop Calculation The static quark potential fit the static potential Autocorrelation Error Estimate exercise

### input file <chroma> <Param> <InlineMeasurements> <elem> <Name>WILSLP</Name> <Frequency>2</Frequency> < Param> <version>3</version> <kind>7</kind> <j decay>3</j decay> <t dir>3</t dir> <GaugeState> <Name>SIMPLE GAUGE STATE</Name> <GaugeBC> <Name>PERIODIC GAUGEBC</Name> </GaugeBC> </GaugeState> </Param> <NamedObject> <gauge id>default gauge field</gauge id> </NamedObject> </elem> </InlineMeasurements> <nrow>24 24 24 32</nrow> </Param>

Figure 2: The input file for computing wilson loop

### parameters

 Parameter "kind" is used to control which kinds of wilson loop are calculated.

There are three kinds of wilson loop in chroma.

- "space-like"
- "time-like"
- off-axis "time-like"

Set kind 7 mean calculation all three cases.



- The results are stored in output.xml. We can use the "elementtree" which is a python package to read the results in .xml files.
- The result of wilson loop can be stored in a three-dimensional array, such as (conf, tlength, rlength).
- We can apply bootstrap or jackknife methods to estimate errors.

### xml

```
<wils loop1>
 <lengthr>24</lengthr>
  <wloop1>
   <elem>
    <r>0</r>
   <loop>0.593639134045096 0.383657559147797 0.252756190741583 0.16706592846726 0.110677066702199 0.0732310094
   </elem>
   <elem>
   <r>1</r>
   <loop>0.383593083331063 0.19012362611784 0.101552140925667 0.0553684481699792 0.0303952806627127 0.016783064
   </elem>
   <elem>
   <r>2</r>
   <1000>0.252683752292945 0.101340327968154 0.0468444105583397 0.0229603029351851 0.0114138013470634 0.0054538
   </elem>
   <elem>
   <r>3</r>
   loop>0.167030569303193 0.0550769625693254 0.0225417793236289 0.0101988316367707 0.00466471543446183 0.00172
   </elema
   <elem>
   loop>0.110554988875505 0.0302910141581682 0.0112564003889854 0.00491093893725804 0.00201728593561667 0.0004
   </elem>
   <elem>
    <r>5</r>
    <1000>0.0733118269589373 0.0166671969163673 0.0056917660787625 0.00197730908860176 0.000366102289530654 0.00
   </elem>
    <1000>0.0485978833789361 0.00894917624710141 0.00283515087342205 0.000844505082801832 0.000242980251629579
   </elem>
   <elem>
   <r>7</r>
   <100p>0.0322650521274582 0.00497864585325959 0.0013256229346642 0.000648393534869111 0.000144230832238614 9
   </elem>
   <elem>
    <r>8</r>
   loop>0.0212682536075674 0.00291870420933602 0.000734577819832468 0.000272637871877147 1.96716717611362e-05
   </elem>
   <elem>
   </elem>
          Figure 3: xml output file for wilson loop
```

### results



Figure 4: The wilson loops vary with t dimensions. Each line represents a different distance r.

### Outline

# Wilson Loop What is Wilson Loop Physical interpretation of the Wilson loop Calculation The static quark potential fit the static potential Autocorrelation Error Estimate exercise

### A few integrals for SU(3)

### Some useful integrals over products of entries U<sub>ab</sub> of group elements U in the fundamental representation:

 $\int_{\mathsf{SU}(3)} \mathsf{d}UU_{ab} = 0$   $\int_{\mathsf{SU}(3)} \mathsf{d}UU_{ab}U_{cd} = 0$   $\int_{\mathsf{SU}(3)} \mathsf{d}UU_{ab} \left(U^{\dagger}\right)_{cd} = \frac{1}{3} \delta_{ad} \delta_{bc}$   $\int_{\mathsf{SU}(3)} \mathsf{d}UU_{ab}U_{cd}U_{ef} = \frac{1}{6} \epsilon_{ace} \epsilon_{bdf}$ 

(13)

### • A relation that will be useful later:

 $\int \mathrm{d}U \operatorname{tr}[VU] \operatorname{tr}[U^{\dagger}W] = \frac{1}{3} \operatorname{tr}[VW]$ 



Figure 5: Integrating out the common link of a product of two plaquettes

0 0

### The static quark potential

The wilson loop can be expressed as a path integral:

$$\langle W_{\mathcal{C}} 
angle = rac{1}{Z} \int \mathcal{D}[U] \exp\left(-rac{eta}{3} \sum_{P} \operatorname{\mathsf{Re}} \operatorname{\mathsf{tr}}\left[ \mathscr{V} - U_{P} 
ight] 
ight) \operatorname{\mathsf{tr}} \left| \prod_{l \in \mathcal{C}} U_{l} 
ight|$$

• This expression can be rewritten as(the constant factor  $\exp(-\beta/3\sum_P \operatorname{Retr}[\mathbb{H}])$ canceled with the denominators.)

$$\begin{split} \langle W_{\mathcal{C}} \rangle &= \frac{1}{Z'} \int \mathcal{D}[U] \exp\left(\frac{\beta}{3} \sum_{P} \operatorname{Re} \operatorname{tr}\left[U_{P}\right]\right) \operatorname{tr}\left[\prod_{l \in \mathcal{C}} U_{l}\right] \\ &= \frac{1}{Z'} \int \mathcal{D}[U] \exp\left(\frac{\beta}{6} \sum_{P} \left(\operatorname{tr}\left[U_{P}\right] + \operatorname{tr}\left[U_{P}^{\dagger}\right]\right)\right) \operatorname{tr}\left[\prod_{l \in \mathcal{C}} U_{l}\right] \end{split}$$
(15)

0 0

(14)

• we expand the Boltzmann factor of (15) in  $\beta$  using the Taylor expansion for the exponential function,

$$\exp\left(\frac{\beta}{6}\sum_{P}\left(\operatorname{tr}\left[U_{P}\right]+\operatorname{tr}\left[U_{P}^{\dagger}\right]\right)\right)=\sum_{i,j=0}^{\infty}\frac{1}{i!j!}\left(\frac{\beta}{6}\right)^{i+j}$$
(16)
$$\times\left(\sum_{P}\operatorname{tr}\left[U_{P}\right]\right)^{i}\left(\sum_{P}\operatorname{tr}\left[U_{P}^{\dagger}\right]\right)^{j}$$
(17)
(17)

- Note that in this expansion we have separated the contributions from clockwise oriented plaquettes  $U_P^{\dagger}$  and counter-clockwise oriented plaquettes  $U_P$ .
- This is important since for the leading term in the expansion only those plaquettes oriented oppositely to the Wilson loop contribute.

• For the normalization factor Z' it is straightforward to determine the leading contribution in the small-  $\beta$ expansion. Already the first term with i = j = 0 in (15) gives a nonvanishing contribution to the integral and we obtain

$$Z' = \int \mathcal{D}[U] \exp\left(\frac{\beta}{6} \sum_{P} \left(\operatorname{tr}\left[U_{P}\right] + \operatorname{tr}\left[U_{P}^{\dagger}\right]\right)\right) \quad (18)$$
$$= \int \mathcal{D}[U](1 + \mathcal{O}(\beta)) = 1 + \mathcal{O}\left(\beta^{2}\right) \quad (19)$$

- The expansion of the numerator of (15) is less straightforward. The leading term in the expansion of the Boltzmann factor are vanished due to SU(3) group integratals as in (13).
- We have to expand the Boltzmann factor in small  $\beta$ . This brings down additional link variables from the exponent and in this way we can saturate the integrals over the links to obtain nonvanishing contributions.

0 0

- If we consider the contour C of the Wilson loop to be a  $n_r \times n_t$  rectangle of links, then the minimal area  $\mathcal{A}_C$ spanned by this contour contains  $n_A = n_r n_t$  plaquettes.
- The physical area  $\mathcal{A}_{\mathcal{C}}$  is related to the extension of the Wilson loop in physical units  $an_r, an_t$  by  $\mathcal{A}_{\mathcal{C}} = a^2 n_A = an_r an_t$ .
- we find nonvanishing contributions only when each link variable  $U_{\mu}(n)$  in the loop is paired with its conjugate partner  $U_{\mu}(n)^{\dagger}$ . since we have plaquettes in our action, this must continue until we have filled the contour Cwith  $n_A$  plaquettes obtained from the expansion of the Boltzmann factor.

0 0



Figure 6: Leading contribution in the strong coupling (small  $\beta$ ) expansion of the Wilson loop.

• we need at least  $n_A = n_r n_t$  plaquettes from the exponent, the necessary term in the expansion (16) of the exponential is of order  $n_A$ . Explicitly this leading term reads

$$\int \mathcal{D}[U] \frac{1}{n_{A}!} \left(\frac{\beta}{6}\right)^{n_{A}} \left(\sum_{P} \operatorname{tr}\left[U_{P}^{\dagger}\right]\right)^{n_{A}} \operatorname{tr}\left[\prod_{l \in \mathcal{C}} U_{l}\right]$$
$$= \left(\frac{\beta}{6}\right)^{n_{A}} \int \mathcal{D}[U] \prod_{P \in \mathcal{A}_{C}} \operatorname{tr}\left[U_{P}^{\dagger}\right] \operatorname{tr}\left[\prod_{l \in \mathcal{C}} U_{l}\right]$$
$$= \operatorname{tr}[\mathbb{W}] \left(\frac{\beta}{6}\right)^{n_{A}} \left(\frac{1}{3}\right)^{n_{A}} = 3 \exp\left(n_{A} \ln\left(\frac{\beta}{18}\right)\right)$$
(20)

### Combining (3.67) and (3.68) we find

$$\langle W_{\mathcal{C}} \rangle = 3 \exp\left(n_A \ln\left(\frac{\beta}{18}\right)\right) (1 + \mathcal{O}(\beta))$$

$$= 3 \exp\left(n_r n_t \ln\left(\frac{\beta}{18}\right)\right) (1 + \mathcal{O}(\beta))$$
(22)

• According to (3.56) this expression has to be compared to the asymptotic form, i.e., for large  $t = an_t$  we have

$$\langle W_{\mathcal{C}} \rangle \propto \exp\left(-an_t V(r)\right)$$
 (23)

 $\circ~$  Thus, we conclude that in the strong coupling limit (note that  $r=an_r$  )

$$V(r) = \sigma r \tag{24}$$

 $\circ~$  Where the string tension  $\sigma$  is given by the leading order expression

$$\sigma = -\frac{1}{a^2} \ln\left(\frac{\beta}{18}\right) (1 + \mathcal{O}(\beta))$$
(25)

- Such a term in the potential gives rise to the important feature of confinement.
- In QED the static potential is of the Coulomb-type and is the same like in QCD when  $\alpha_s \rightarrow 0_{\circ}$  so the potential also have the Coulomb-type term.
- $\circ\,$  the static QCD potential can be parameterized by

$$V(r) = A + \frac{B}{r} + \sigma r$$
 (26)

### Outline

# Wilson Loop What is Wilson Loop Physical interpretation of the Wilson loop Calculation The static quark potential fit the static potential Autocorrelation Error Estimate exercise

### static potential

 According to the Eq. 12, when t is large, Wilson loop decays exponentially with t.

 We can use the following formula to obtain the potential with different r which is similar to meson mass calculation:

$$V(t,r) = \log(\frac{W(t,r)}{W(t+1,r)})$$

• When t is large enough, V(t,r) is close to the static potential of quark-antiquark.

0 0 0

### results



### results

### Finally, we obtain the vary of static potential with distance r



Figure 8: The static quark potential V(r) vary with distance r.

### Outline

# Wilson Loop What is Wilson Loop Physical interpretation of the Wilson loop Calculation The static quark potential fit the static potential Autocorrelation Error Estimate exercise

### Autocorrelation

 The statistical analysis of the measured observables is the important final step of a Monte Carlo simulation.
 Since in our case the data sample is the result of a (computer-)time series in our Monte Carlo simulation there is high chance that the observables are in fact correlated. This so-called autocorrelation leads to a nonvanishing AUTOCORRELATION FUNCTION, which we define as

 $C_X (X_i, X_{i+t}) = \langle (X_i - \langle X_i \rangle) (X_{i+t} - \langle X_{i+t} \rangle) \rangle$  $= \langle X_i X_{i+t} \rangle - \langle X_i \rangle \langle X_{i+t} \rangle$ 

 For a Markov chain in equilibrium the autocorrelation function depends only on the (computer time) separation t and we write

 $C_X(t) = C_X(X_i, \overline{X_{i+t}})$ 

• Note that  $C_X(0) = \sigma_X^2$ . In a typical situation the normalized correlation function  $\Gamma_X$  exhibits exponential behavior asymptotically for large t:

$$\Gamma_X(t) \equiv \frac{C_X(t)}{C_X(0)} \sim \exp\left(-\frac{t}{\tau_{X,\exp}}\right)$$

 $\circ~$  one calls  $\tau_{X,~\rm exp}~$  the exponential autocorrelation time for X.

0 0 0

### $\circ\,$ For uncorrelated data, the variance of estimator is

$$\sigma_{\hat{X}}^{2} = \left\langle (\hat{X} - \langle X \rangle)^{2} \right\rangle = \left\langle \left( \frac{1}{N} \sum_{i=1}^{N} (X_{i} - \langle X \rangle) \right)^{2} \right\rangle$$
$$= \frac{1}{N^{2}} \left\langle \sum_{i,j=1}^{N} (X_{i} - \langle X \rangle) (X_{j} - \langle X \rangle) \right\rangle$$
$$= \frac{1}{N} \left\langle X^{2} \right\rangle - \left\langle X \right\rangle^{2} + \frac{1}{N^{2}} \sum_{i \neq j} \left\langle X_{i} X_{j} \right\rangle$$
(27)

1. Wilson Loop

• For correlated random variables  $X_i$  the terms with  $i \neq j$  in the second line of (27) do not vanish and one can continue this equation to obtain for the correlated case

 $\sigma_{\hat{X}}^2 = \frac{1}{N^2} \sum_{i,j=1}^{N} C_X(|i-j|) = \frac{1}{N^2} \sum_{t=-(N-1)}^{N-1} \sum_{k=1}^{N-|t|} C_X(|t|)$  $=\sum_{N=1}^{N} \frac{N-|t|}{N^2} C_X(|t|) = \frac{C_X(0)}{N} \sum_{N=1}^{N} \Gamma_X(|t|) \left(1 - \frac{|t|}{N}\right)$  $l pprox rac{\sigma_X^2}{N} 2 \left( rac{1}{2} + \sum_{l=1}^N \Gamma_X(|t|) 
ight) \equiv rac{\sigma_X^2}{N} 2 au_{X, \ {
m inf}}$ 0 0 0

We introduced the integrated autocorrelation time

$$au_{X, ext{ int }} = rac{1}{2} + \sum_{t=1}^N \Gamma_X(t).$$

 This definition is motivated by the observation that for exponential behavior

$$au_{X, \text{ int }} = rac{1}{2} + \sum_{t=1}^N \Gamma_X(|t|) pprox \int_0^\infty \mathrm{d}t \mathbf{e}^{-t/ au} = au( ext{ for large } au).$$

### Outline

# Wilson Loop What is Wilson Loop Physical interpretation of the Wilson loop Calculation The static quark potential fit the static potential Autocorrelation Error Estimate exercise

- If it is too expensive to compute the autocorrelation time, there are simpler statistical methods for obtaining at least some estimate for the correlation of the data.
- Data blocking methods
- Statistical bootstrap
- Jackknife

### Data blocking methods

- One divides the data into sub-blocks of data of size K, computes the block mean values, and considers them as new variables X<sub>i</sub>.
- The variance of these blocked  $X_i$  then should decrease like 1/K if the original data were independent.
- One repeats this for a sequence of different values for K. As soon as the 1/K behavior is observed for large enough K one may consider these block variables as statistically independent.
- Once the data (or the block results) can be considered independent, one may determine the expectation values of the observables of interest and their errors.

0 0

### Statistical bootstrap

- $\circ\,$  Let us call the value of the observable obtained from the original data set  $\widehat{\theta}.$
- One recreates from the sample repeatedly other samples by choosing randomly N data out of the original set. Let us assume we have done this K times and thus have K sets of N data values each.

0 0 0

 $\circ~$  For each of these sets one computes the observable  $\theta$  resulting in values  $\theta_k$  with  $k=1,\ldots,K.$  Then one determines

$$\widetilde{\theta} \equiv \frac{1}{K} \sum_{k=1}^{K} \theta_k, \quad \sigma_{\widetilde{\theta}}^2 \equiv \frac{1}{K} \sum_{k=1}^{K} \left( \theta_k - \widetilde{\theta} \right)^2$$

• These are estimators for  $\langle \theta \rangle$  and  $\sigma_{\theta}^2$ . They are not unbiased and therefore  $\tilde{\theta} \neq \hat{\theta}$  for finite K. The difference is called bias and gives an idea on how far away the result may be from the true  $\langle \theta \rangle$ . As final result for the observable one quotes  $\langle \theta \rangle = \tilde{\theta} \pm \sigma_{\tilde{\theta}}$ 

0 0

### Jackknife

- We start with a data set of size N and an observable  $\theta$ like for the statistical bootstrap. The value of the observable computed for the original set is again called  $\hat{\theta}$ .
- One now constructs N subsets by removing the n th entry of the original set (n = 1, ..., N) and determines the value  $\theta_n$  for each set.

• Then

$$\sigma_{\widehat{\theta}}^2 \equiv \frac{N-1}{N} \sum_{n=1}^{N} \left( \theta_n - \widehat{\theta} \right)^2$$

The square root of the variance gives an estimate for the standard deviation of  $\hat{\theta}$ .

0 0 0

• For the final result one quotes either  $\langle \theta \rangle = \hat{\theta} \pm \sigma_{\hat{\theta}}$  or replaces  $\hat{\theta}$  by the unbiased estimator. The bias may be determined from

$$\widetilde{ heta} \equiv rac{1}{N}\sum_{n=1}^N heta_n$$

leading to  $\hat{\theta} - (N-1)(\tilde{\theta} - \hat{\theta})$  as the unbiased estimator for  $\langle \theta \rangle$ .

0 0

### why Jackknife

 When we want to estimate some function of the average of x, i.e. f(X).A poor way to estimate this would be from

$$\overline{f} \equiv \overline{f(x)} = \frac{1}{N} \sum_{i=1}^{N} f_i$$
 where  $f_i = f(x_i)$ 

• This is bad because it is biased, i.e.

 $\langle \bar{f} \rangle \neq f(X)$ 

• The difference is given by

$$\langle \bar{f} \rangle - f(X) = \int P(x)(f(x) - f(X))dx$$

$$= f'(X) \int P(x)(x - X)dx + \frac{1}{2}f''(X) \int P(x)($$

• A better, i.e. less biased, estimate for f(X) is clearly  $f(\bar{x})$ .

$$\langle f(\bar{x}) \rangle - f(X) = \frac{1}{2} f''(X) \left[ \left\langle \bar{x}^2 \right\rangle - \left\langle \bar{x} \right\rangle^2 \right] + \cdots$$
$$= \frac{1}{2N} f''(X) \sigma^2 + \cdots$$

• When we want to estimate for f(X) and its error, we can use jackknife or bootstrap resampling methods.

### Outline

# Wilson Loop What is Wilson Loop Physical interpretation of the Wilson loop Calculation The static quark potential fit the static potential Autocorrelation Error Estimate exercise

### exercise

1. According to Eq. 35, plot the static potential V(t,r). 2. Choice V(r,t=3), plot V(r).

### exercise

 3. the vacuum expectation value of the Wilson loop is connected to the static potential via

 $\langle W_{\mathcal{C}} \rangle = C \exp(-tV(r)) = C \exp(-n_t a V(na))$ 

• As V(r) can parameterized as in Eq. 26, So

$$egin{aligned} W_{\mathcal{C}} &> C \exp\left(-n_t a (A + rac{B}{a n_r} + \sigma n_r a)
ight) \ &= C \exp\left(-n_t a A - rac{B n t}{n_r} - \sigma n_r n_t a^2)
ight) \end{aligned}$$

### $\circ\,$ Using this formula to fit the Wilson loop and get the fit value of B and $\sigma\,$

 Finally, the lattice spacing can get from these two parameters

$$a = \frac{1}{2}\sqrt{\frac{\sigma a^2}{1.65 + B}}$$



