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Wilson Loop

◦ After we have produced the pure gauge
configurations, we can make some physical
measurements on these configurations.

◦ A Wilson loop WL is made from four pieces, two
so-called Wilson lines S(m,n,nt), S(m,n,0), and two
temporal transporters T(n,nt ),T(m,nt).

1. Wilson Loop 3/58



Wilson Loop

◦ The Wilson line S(m,n,nt) connects the two spatial
points m and n along some path Cm,n with all link
variables restricted to time argument nt ,

S (m,n, nt) =
∏

(k,j)∈Cm,n

Uj (k, nt) . (1)

◦ The temporal transporter T(n,nt) is a straight line of
nt link variables in time direction, all situated at
spatial position n,

T (n, nt) =
nt−1∏
j=0

U4(n, j). (2)
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Wilson Loop

◦ Attaching the four pieces to each other gives a closed
loop L,

L : (m, nt)
S−→ (n, nt)

T †
−→ (n, 0)

S†
−→ (m, 0)

T−→ (m, nt) .
(3)

◦ The Wilson loop WL is obtained by taking the trace,

WL[U ] = tr
[
S (m,n, nt)T (n, nt)

† S(m,n, 0)†T (m, nt)
]

(4)

= tr

 ∏
(k,µ)∈L

Uµ(k)

 (5)

◦ If the piece of loop Cm,nused in S(m,n,nt) is a straight
line we speak of a planar Wilson loop.Otherwise the
Wilson loop is called nonplanar.
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Wilson Loop

Figure 1: Examples for a planar (left-hand side plot) and a
nonplanar (right-hand side) Wilson loop. The horizontal direction
is time
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Physical interpretation of the Wilson loop

◦ Due to the gauge symmetry, We can choice a gauge for
gauge field Aµ(x)

A4(x) = 0, (6)
◦ i.e., temporal gauge. So the temporal transporters
become trivial,

T (n, nt) =
nt−1∏
j=0

U4(n, j) = ⊮, (7)

◦ we obtain the following chain of identities

⟨WL⟩ = ⟨WL⟩temp =
〈
tr
[
S (m,n, nt)S(m,n, 0)†

]〉
temp ,

(8)
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◦ The temporal gauge used in (8) makes explicit that the
Wilson loop is the correlator of two Wilson lines
S(m,n,nt) and S(m,n,0) situated at time slices nt and 0.
Thus we can interpret this correlator using the
equation

lim
T→∞

⟨O2(t)O1(0)⟩T =
∑
n

〈
0
∣∣∣Ô2

∣∣∣n〉〈n ∣∣∣Ô1

∣∣∣ 0〉 e−tEn

◦ where we inserting the unit operator of the vectors of
a complete orthonormal basis as

⊮ =
∑
n

|en⟩ ⟨en|

in the left-hand side of the equation.
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◦ The correlator behaves for large total temporal
extent T of our Euclidean lattice as (a, b are summed)〈
tr
[
S (m,n, nt)S(m,n, 0)†

]〉
temp =

∑
k

〈
0
∣∣∣Ŝ(m,n)ab

∣∣∣ k〉
(9)〈

k
∣∣∣Ŝ(m,n)†ba

∣∣∣ 0〉 e−tEk

(10)

where the Euclidean time argument t is related to nt

via t = a nt with a being the lattice spacing. The sum in
(9) runs over all states |k⟩ that have a non-vanishing
overlap with Ŝ(m, n)†|0⟩
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◦ the states |k⟩ with non-vanishing overlap are states
describing a static quark–antiquark pair located at
spatial positions m and n.

◦ The energy E1 is thus identified with the energy of
the quark–antiquark pair, which is the static potential
V (r) at spatial quark separation r,

E1 = V (r) with r = a|m− n| (11)
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◦ Combining (8), (9), and (11) we obtain

⟨WL⟩ ∝ e−tV (r)
(
1 +O

(
e−t∆E

))
= e−ntaV (r)

(
1 +O

(
e−nta∆E

))
(12)

◦ Thus we find that we can calculate the static quark–
antiquark potential from the large-nt behavior of the
Wilson loop. The corrections in (12) are exponentially
suppressed, where ∆E is the difference between V (r)
and the first excited energy level of the quark–
antiquark pair.
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planar and nonplanar

◦ The Wilson loops we have introduced are not
necessarily planar, but also nonplanar.

◦ Both loops have n = 5 (the horizontal direction is
time). The planar loop has r = 3a, the nonplanar loop
has r =

√
32 + 1a =

√
10a.

◦ Thus with nonplanar Wilson loops we can calculate the
potential V (r) not only at distances r that are integer
multiples of a, but also at intermediate points.

◦ Nonplanar Wilson loops also allow one to study
whether rotational invariance is eventually restored
when approaching the continuum limit.
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input file

◦

Figure 2: The input file for computing wilson loop
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parameters

◦ Parameter“kind”is used to control which kinds of
wilson loop are calculated.

◦ There are three kinds of wilson loop in chroma.
▶“space-like”
▶“time-like”
▶ off-axis“time-like”

◦ Set kind 7 mean calculation all three cases.
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xml

◦ The results are stored in output.xml. We can use the
“elementtree”which is a python package to read the
results in .xml files.

◦ The result of wilson loop can be stored in a
three-dimensional array, such as (conf, tlength,
rlength).

◦ We can apply bootstrap or jackknife methods to
estimate errors.
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xml

Figure 3: xml output file for wilson loop
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results
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Figure 4: The wilson loops vary with t dimensions. Each line
represents a different distance r.
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A few integrals for SU(3)

◦ Some useful integrals over products of entries Uab of
group elements U in the fundamental representation:∫

SU(3) dUUab = 0∫
SU(3) dUUabUcd = 0∫
SU(3) dUUab

(
U †)

cd
= 1

3
δadδbc∫

SU(3) dUUabUcdUef = 1
6
ϵaceϵbdf

(13)
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◦ A relation that will be useful later:∫
dU tr[V U ] tr

[
U †W

]
=

1

3
tr[VW ]

Figure 5: Integrating out the common link of a product of
two plaquettes
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The static quark potential

◦ The wilson loop can be expressed as a path integral:

⟨WC⟩ =
1

Z

∫
D[U ] exp

(
−β

3

∑
P

Re tr [⊮− UP ]

)
tr
[∏

l∈C

Ul

]
(14)

◦ This expression can be rewritten as(the constant
factor exp (−β/3

∑
P Re tr[⊮])canceled with the

denominators.)

⟨WC⟩ =
1

Z ′

∫
D[U ] exp

(
β

3

∑
P

Re tr [UP ]

)
tr
[∏
l∈C

Ul

]

=
1

Z ′

∫
D[U ] exp

(
β

6

∑
P

(
tr [UP ] + tr

[
U †
P

]))
tr
[∏
l∈C

Ul

]
(15)
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◦ we expand the Boltzmann factor of (15) in β using the
Taylor expansion for the exponential function,

exp
(
β

6

∑
P

(
tr [UP ] + tr

[
U †
P

]))
=

∞∑
i,j=0

1

i!j!

(
β

6

)i+j

(16)

×

(∑
P

tr [UP ]

)i(∑
P

tr
[
U †
P

])j

(17)
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◦ Note that in this expansion we have separated the
contributions from clockwise oriented plaquettes U †

P

and counter-clockwise oriented plaquettes UP .
◦ This is important since for the leading term in the
expansion only those plaquettes oriented oppositely to
the Wilson loop contribute.
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◦ For the normalization factor Z ′ it is straightforward
to determine the leading contribution in the small- β
expansion. Already the first term with i = j = 0 in (15)
gives a nonvanishing contribution to the integral and
we obtain

Z ′ =

∫
D[U ] exp

(
β

6

∑
P

(
tr [UP ] + tr

[
U †
P

]))
(18)

=

∫
D[U ](1 +O(β)) = 1 +O

(
β2
)

(19)
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◦ The expansion of the numerator of (15) is less
straightforward. The leading term in the expansion of
the Boltzmann factor are vanished due to SU(3) group
integratals as in (13).

◦ We have to expand the Boltzmann factor in small β.
This brings down additional link variables from the
exponent and in this way we can saturate the integrals
over the links to obtain nonvanishing contributions.
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◦ If we consider the contour C of the Wilson loop to be
a nr × nt rectangle of links, then the minimal area AC
spanned by this contour contains nA = nrnt plaquettes.

◦ The physical area AC is related to the extension of
the Wilson loop in physical units anr, ant by
AC = a2nA = anrant.

◦ we find nonvanishing contributions only when each link
variable Uµ(n) in the loop is paired with its conjugate
partner Uµ(n)

†. since we have plaquettes in our action,
this must continue until we have filled the contour C
with nA plaquettes obtained from the expansion of the
Boltzmann factor.
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Figure 6: Leading contribution in the strong coupling (small β)
expansion of the Wilson loop.
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◦ we need at least nA = nrnt plaquettes from the
exponent, the necessary term in the expansion (16) of
the exponential is of order nA. Explicitly this leading
term reads∫

D[U ]
1

nA!

(
β

6

)nA

(∑
P

tr
[
U †
P

])nA

tr
[∏

l∈C

Ul

]

=

(
β

6

)nA
∫

D[U ]
∏

P∈AC

tr
[
U †
P

]
tr
[∏

l∈C

Ul

]

= tr[⊮]
(
β

6

)nA
(
1

3

)nA

= 3 exp
(
nA ln

(
β

18

))
(20)

1. Wilson Loop 30/58



◦ Combining (3.67) and (3.68) we find

⟨WC⟩ = 3 exp
(
nA ln

(
β

18

))
(1 +O(β)) (21)

= 3 exp
(
nrnt ln

(
β

18

))
(1 +O(β)) (22)

◦ According to (3.56) this expression has to be
compared to the asymptotic form, i.e., for large
t = ant we have

⟨WC⟩ ∝ exp (−antV (r)) (23)
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◦ Thus, we conclude that in the strong coupling limit
(note that r = anr )

V (r) = σr (24)

◦ Where the string tension σ is given by the leading
order expression

σ = − 1

a2
ln
(

β

18

)
(1 +O(β)) (25)
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◦ Such a term in the potential gives rise to the
important feature of confinement.

◦ In QED the static potential is of the Coulomb-type
and is the same like in QCD when αs → 0。so the
potential also have the Coulomb-type term.

◦ the static QCD potential can be parameterized by

V (r) = A+
B

r
+ σr (26)
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static potential

◦ According to the Eq. 12, when t is large, Wilson loop
decays exponentially with t.

◦ We can use the following formula to obtain the
potential with different r which is similar to meson
mass calculation:

V (t, r) = log( W (t, r)

W (t+ 1, r)
).

◦ When t is large enough, V (t, r) is close to the static
potential of quark-antiquark.
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results
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Figure 7: The potential V (t, r) obtained by wilson loops.
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results

◦ Finally, we obtain the vary of static potential with
distance r

0 1 2 3 4 5
r

0.0

0.2

0.4

0.6

0.8

1.0
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static potential
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Figure 8: The static quark potential V (r) vary with distance r.
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Autocorrelation

◦ The statistical analysis of the measured observables
is the important final step of a Monte Carlo simulation.

◦ Since in our case the data sample is the result of a
(computer-)time series in our Monte Carlo simulation
there is high chance that the observables are in fact
correlated. This so-called autocorrelation leads to a
nonvanishing , which we
define as

CX (Xi, Xi+t) = ⟨(Xi − ⟨Xi⟩) (Xi+t − ⟨Xi+t⟩)⟩
= ⟨XiXi+t⟩ − ⟨Xi⟩ ⟨Xi+t⟩
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◦ For a Markov chain in equilibrium the autocorrelation
function depends only on the (computer time)
separation t and we write

CX(t) = CX (Xi, Xi+t)

◦ Note that CX(0) = σ2
X . In a typical situation the

normalized correlation function ΓX exhibits
exponential behavior asymptotically for large t :

ΓX(t) ≡
CX(t)

CX(0)
∼ exp

(
− t

τX,exp

)
◦ one calls τX, exp the exponential autocorrelation time
for X.
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◦ For uncorrelated data, the variance of estimator is

σ2
X̂
=
〈
(X̂ − ⟨X⟩)2

〉
=

〈(
1

N

N∑
i=1

(Xi − ⟨X⟩)

)2〉

=
1

N2

〈
N∑

i,j=1

(Xi − ⟨X⟩) (Xj − ⟨X⟩)

〉

=
1

N

〈
X2
〉
− ⟨X⟩2 + 1

N2

∑
i ̸=j

⟨XiXj⟩

. (27)
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◦ For correlated random variables Xi the terms with
i ̸= j in the second line of (27) do not vanish and one
can continue this equation to obtain for the correlated
case

σ2
X̂
=

1

N2

N∑
i,j=1

CX(|i− j|) = 1

N2

N−1∑
t=−(N−1)

N−|t|∑
k=1

CX(|t|)

=
N∑

t=−N

N − |t|
N2

CX(|t|) =
CX(0)

N

N∑
t=−N

ΓX(|t|)
(
1− |t|

N

)

≈ σ2
X

N
2

(
1

2
+

N∑
t=1

ΓX(|t|)

)
≡ σ2

X

N
2τX, int
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◦ We introduced the integrated autocorrelation time

τX, int =
1

2
+

N∑
t=1

ΓX(t).

◦ This definition is motivated by the observation that
for exponential behavior

τX, int =
1

2
+

N∑
t=1

ΓX(|t|) ≈
∫ ∞

0

dte−t/τ = τ( for large τ).
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◦ If it is too expensive to compute the autocorrelation
time，there are simpler statistical methods for
obtaining at least some estimate for the correlation of
the data.

◦ Data blocking methods
◦ Statistical bootstrap
◦ Jackknife
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Data blocking methods

◦ One divides the data into sub-blocks of data of size K,
computes the block mean values, and considers them
as new variables Xi.

◦ The variance of these blocked Xi then should decrease
like 1/K if the original data were independent.

◦ One repeats this for a sequence of different values
for K. As soon as the 1/K behavior is observed for
large enough K one may consider these block variables
as statistically independent.

◦ Once the data (or the block results) can be considered
independent, one may determine the expectation
values of the observables of interest and their errors.
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Statistical bootstrap

◦ Let us call the value of the observable obtained from
the original data set θ̂.

◦ One recreates from the sample repeatedly other
samples by choosing randomly N data out of the
original set. Let us assume we have done this K times
and thus have K sets of N data values each.
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◦ For each of these sets one computes the observable θ
resulting in values θk with k = 1, . . . , K. Then one
determines

θ̃ ≡ 1

K

K∑
k=1

θk, σ2
θ̃
≡ 1

K

K∑
k=1

(
θk − θ̃

)2
◦ These are estimators for ⟨θ⟩ and σ2

θ . They are not
unbiased and therefore θ̃ ̸= θ̂ for finite K. The
difference is called bias and gives an idea on how far
away the result may be from the true ⟨θ⟩. As final
result for the observable one quotes ⟨θ⟩ = θ̃ ± σθ̃
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Jackknife

◦ We start with a data set of size N and an observable θ
like for the statistical bootstrap. The value of the
observable computed for the original set is again
called θ̂.

◦ One now constructs N subsets by removing the n th
entry of the original set (n = 1, . . . , N) and determines
the value θn for each set.

◦ Then

σ2
θ̂
≡ N − 1

N

N∑
n=1

(
θn − θ̂

)2
The square root of the variance gives an estimate for
the standard deviation of θ̂.
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◦ For the final result one quotes either ⟨θ⟩ = θ̂ ± σθ̂ or
replaces θ̂ by the unbiased estimator. The bias may be
determined from

θ̃ ≡ 1

N

N∑
n=1

θn

leading to θ̂ − (N − 1)(θ̃ − θ̂) as the unbiased estimator
for ⟨θ⟩.
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why Jackknife

◦ When we want to estimate some function of the
average of x, i.e. f(X).A poor way to estimate this
would be from

f̄ ≡ f(x) =
1

N

N∑
i=1

fi where fi = f (xi)

◦ This is bad because it is biased, i.e.

⟨f̄⟩ ̸= f(X)
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◦ The difference is given by

⟨f̄⟩ − f(X) =

∫
P (x)(f(x)− f(X))dx

= f ′(X)

∫
P (x)(x−X)dx+

1

2
f ′′(X)

∫
P (x)(x−X)2dx+ · · ·

=
1

2
f ′′(X)

[〈
x2
〉
− ⟨x⟩2

]
+ · · ·

=
1

2
f ′′(X)σ2 + · · ·
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◦ A better, i.e. less biased, estimate for f(X) is clearly
f(x̄).

⟨f(x̄)⟩ − f(X) =
1

2
f ′′(X)

[〈
x̄2
〉
− ⟨x̄⟩2

]
+ · · ·

=
1

2N
f ′′(X)σ2 + · · ·

◦ When we want to estimate for f(X) and its error, we
can use jackknife or bootstrap resampling methods.
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exercise

1. According to Eq. 35, plot the static potential V (t, r).
2. Choice V (r, t = 3) , plot V(r) .
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exercise

◦ 3. the vacuum expectation value of the Wilson loop is
connected to the static potential via

⟨WC⟩ = C exp(−tV (r)) = C exp (−ntaV (na))

◦ As V(r) can parameterized as in Eq. 26, So

⟨WC⟩ = C exp
(
−nta(A+

B

anr

+ σnra)

)
= C exp

(
−ntaA− Bnt

nr

− σnrnta
2)

)
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◦ Using this formula to fit the Wilson loop and get the
fit value of B and σ

◦ Finally, the lattice spacing can get from these two
parameters

a =
1

2

√
σa2

1.65 +B
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