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The intrinsic noise level of superconductor detectors is 1/ 1000 times lower
à energy resolution 30 times better
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Tejas Guruswamy et al. (2021)

Vortex (Si detector)  ∆E = 130 eV      

TES (Superconductor detector)  ∆E = 12 ~ 15 eV
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TES Absorber

Bennett et al. Rev. Sci. Instrum. 83, 093113 (2012) 

TES

Absorber
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low-temperature cryostat
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low-temperature cryostat

~ 100 mK cooling stage



~ 100 mK cooling stage

TES: Transition-Edge Sensor
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low-temperature cryostat

TES Absorber
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Thermal bias Electrical biasR(T, I) relation
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Thermal and electrical parameters should be carefully chosen to produce stable signal response

✓ ✗

✗✗
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Tejas Guruswamy et al. (2021)

Application I: X-ray Science
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✓ neighboring spectral lines

✓ low content elements
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advantage of energy dispersive XRD:
• flexibility: fixed angle, convinient for experiments with extreme conditions
• 2 function in 1 shot: measures characteristic spectra while getting XRD data
• large volumn of interest
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disadvantage: 
• resolution worse than angular dispersive XRD with semiconductor detectors (770 eV @ 112 keV)
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• flexibility: fixed angle, convinient for experiments with extreme conditions
• 2 function in 1 shot: measures characteristic spectra while getting XRD data
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disadvantage: 
• resolution worse than angular dispersive XRD with semiconductor detectors (770 eV @ 112 keV)

TES detector: 80 eV @ 100 keV, can compete with angular dispersive XRD
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Umeshkumar Patel ... Daikang Yan .... J. of Low Temp. Phys. 
199, 384–392 (2020)

Daikang Yan et al. IEEE Trans. Appl. 
Supercond. 29, 1–4 (2019)

design 1st version of fabrication
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Figure credit: T. Okumura, RIKEN

Muon: same charge as an electron, 200 times more massive

Muonic atom Bohr radius: 200 times smaller

Coulomb field: 40,000 times stronger

Study QED (quantum electrodynamics) 
under extremely strong electric fields 

by 
measuring the x-ray energy of 

muonic atom de-excitation
S. Okada et al,. Journal of Low 
Temperature Physics (2020) 
200:445–451 
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TES is a good candidate for this application, the key design considerations are:
• good linearity under 45 keV à Esat ∝ C/α
• good energy resolution à ∆E ∝ C/α	
• high collecting efficiency à multiplexing, large absorber

Measurement goal: measure absolute energy with accuracy of ~ 1eV

Target 𝜇-Ar energy: — 44.3 keV, predicted QED shift 99 eV
   — 20.5 keV, predicted QED shift 23 eV

Traditional semiconductor detectors does not have enough energy resolution (500 eV @ 45 keV).
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Au bars：suppress noise and adjust 𝛼 = !"#$%
!"#$&

	

200 𝜇m

TES

Absorber Absorber:
Au：large specific heat, set the total C
Bi： small specific heat, thick plating to increase QE

TES: 
Mo/Au bilayer
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Experiment conducted at Beamline-1BM-C, Advanced Photon Source, ANL, USA
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More results to come in 2024......

Daikang Yan et al. (2022)
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Picture credit: Herbert Huffner, “The Beginning of the World We Know”

Cosmic Microwave Background (CMB)
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Picture credit: Victor Marin Felip, “The Search for Cosmic Inflation”
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Picture credit: Herbert Huffner, “The Beginning of the World We Know”

CMB-B mode: perturbation from primodial gravitational waves
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6-inch wafer
432 pixels per array
4 TESs per pixel
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time-division 
multiplexing

code-division 
multiplexing frequency-division multiplexing microwave-squid multiplexing

Machanism
pixels in the same 
column are read 
out in time series

signals from each 
pixel are encoded 

and read out

each pixel is biased in a unique 
LCR circuit, and detected in a 

unique frequency channel

TES signal coupled to rf-SQUID, 
then readout by microwave 

resonators

Advantage well-developed 
technology

each pixel can be 
biased individually

each pixel can be biased 
individually

large readout bandwidth, only 
uses 3 pairs of cables for the 

whole detector module

Disadvantage N sampling noise one bad pixel kills 
a whole column

complicated matching between 
TESs and the readout electronics 

pixels are not individually biased, 
subject to nonuniformity across 

large arrays
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readout wafer

readout wafer



Research at IHEP: R&D

2023/10 Daikang Yan - IHEP 37

Fabrication Characterization
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What we do:

1. superconductor detector development (mainly TES, and for various applications)

• overall design

• device fabrication

• detector characterization

2. low-temperature multipexing readout electronics (SQUID)

3. room-temperature detector control & data taking electronics

4. data processing

• photon signal analysis and optimization
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What we do:

1. superconductor detector development (mainly TES, and for various applications)

• overall design

• device fabrication

• detector characterization

2. low-temperature multipexing readout electronics (SQUID)

3. room-temperature detector control & data taking electronics

4. data processing

• photon signal analysis and optimization

We are looking for postdocs and students!
Daikang Yan (闫代康): yandk@ihep.ac.cn, yandaikang@gmail.com
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Visit our superconducor device lab,
start your low-resistance journey!

We are looking for postdocs and students!
Daikang Yan (闫代康): yandk@ihep.ac.cn, yandaikang@gmail.com
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More results to come in 2024......
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Figure credit: T. Okumura, RIKEN S. Okada et al,. Journal of Low 
Temperature Physics (2020) 
200:445–451 

Limitation/Requirement:

1) target atom low density

2) high energy resolution
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DC-SQUID RF-SQUID


