

Reconstruction Based on GNN

<u>Cen Mo</u>, Fan Hu, Fuyudi Zhang, Liang Li

TRIDENT Collaboration Meeting 2023

December 1, 2023

- Neural network is only a function that maps input to output.
- Machine learning: use computer to find the BEST function for our tasks.

- Multilayer Perceptron (MLP)
- Boosted Decision Tree
 (BDT)
- Convolutional Neural Network (CNN)

 Recurrent Neural Network (RNN)

 Graph Neural Network (GNN)

 Multilayer Perceptron (MLP)

Data Representation

Neutrino telescope:

- Irregular detector geometry
- Sparse signal

Compared GNN and SSCNN (arxiv:1706.01307) performance:

• GNN outperforms SSCNN in terms of angular resolution in track-like events.

Use point cloud to represent neutrino events:

- Triggered DOMs
- \rightarrow Nodes of point cloud
- Location of DOMs \rightarrow Coordinate of nodes, pos_i .
- DOM-measured time and charge \rightarrow Features of nodes, x_i .

- TridentNet is built based on EdgeConv block: modified from EdgeConv block used in ParticleNet (<u>arxiv:1902.08570</u>).
- Both graph-level and node-level target can be predicted.

Contents of Tasks

- Reconstruction of ν_e /cascade events
 - **Direction** Reconstruction
 - Energy Reconstruction

- Reconstruction of ν_{μ} /track events
 - Direction Reconstruction
 - Energy Reconstruction

Cascade Reconstruction

v_e direction reconstruction

Configuration for Direction Reconstruction

- v_e energy: 100TeV
- Sample size:

v_e direction reconstruction

• Input feature of DOM_i:

- Histogram is further modified (as a **normalization**): $Node_i = [x, y, z, n_x, n_y, n_z, \ln(Histogram + 1)]$
- Network is trained to predict \hat{n}_{ν} with MSE loss:

$$Loss = \left| \frac{\overline{output}}{|output|} - \hat{n}_{\nu} \right|^{2}$$

v_e direction reconstruction

• Resolution reaches 1.3 degrees.

Cascade Reconstruction

v_e direction reconstruction

• Resolution reaches 1.3 degrees.

ν_e energy reconstruction

Configuration for Energy Reconstruction

- v_e energy: 10TeV ~ 100TeV
- Sample size: 150k samples are splitted into:

train : *validation* : *test* = 120k : 15k : 15k

Linearity between num_hits & Energy

Cascade Reconstruction

• Train GNN with:

$$\log_{10} E = GNN(graph) + \log_{10}(\text{num_hits} \times 45.78)$$

$$Loss = (\log_{10} E - \log_{10} E_{truth})^2$$

• Energy resolution is around 10% for high energy event.

Cascade Reconstruction

• Comparison

KM3NeT Results (likelihood)

PoS(ICRC2017)950

PoS(ICRC2023)1074 With pre-selection

• ν_{μ} Direction reconstruction

Configuration for Energy Reconstruction

- v_{μ} energy: 1TeV ~ 1PeV
- Sample size:

train: validation: test = 900k: 70k: 100k

ν_{μ} Direction reconstruction

- Input features: location \overrightarrow{D}_i , first photon arrival time T_i and number of photo hits n_i
- To make full use of the geometric feature of track-like events, the network is trained to predict $\vec{r_i}$ for each DOM_i.
- Loss function: mean square error (MSE) with weight proportional to n_i :

$$Loss = \Sigma_{i} n_{i} \times \left| \overrightarrow{output}_{i} - \vec{r}_{i} \right|^{2} / \Sigma_{i} n_{i}$$

• Linear fit on the predicted \vec{r}_i' then reconstructs \hat{n}_{μ} .

Track-like event display

Direction reconstruction

- Model is trained on events with track length > 500m.
- Median angular error decreases from 1 degree to 0.1 degree as the energy of ν_{μ} increases similar to the result of likelihood method.

- Kinetic angle = $< \vec{n}_{\mu}$, $\vec{n}_{\nu} >$
- Reco error $= \langle \vec{n}_{\mu}, \vec{n}_{recon} \rangle$
- Total angle $= < \vec{n}_{\nu}, \ \vec{n}_{recon} >$

Track Reconstruction

Track-like Events Reconstruction

Energy reconstruction

- Same input features as the direction reconstruction.
- Network is trained with MSE loss to predict $\log_{10} E_{\mu}$. Weight $w = \log_{10} E_{\mu} 2.5$ is applied:

$$Loss = w (output - \log_{10} E_{\mu})^2$$

• A shift term, b = 0.15 is added to outputs of the model:

Track Reconstruction

Page. 19

Comparison

KM3NeT Results (likelihood)

Task	Resolution (GNN)	Resolution (KM3NeT)
Cascade direction	1.3 degrees	2 degrees (w/o time) ~1 degree (with time)
Cascade energy	10% (high E)	5~10%
Track direction	~0.1 (high E)	0.1 (high E)
Track energy	100%	100%

- Simulated neutrino events in TRIDENT are represented as point clouds and are reconstructed by TridentNet.
- GNN demonstrates high accuracy in reconstructing v_e and v_{μ} .

- **Improvement** of neutrino reconstruction will be further studied.
- Future research will try to enhance the method's robustness against experimental **uncertainties and noise**.

Thanks for listening!

Email: mo_cen@sjtu.edu.cn

• Learning rate:

Initial learning Rate = 0.003

Ir scheduler: ReduceLROnPlateau(factor=0.5, patience=5)

• optimizer:

Adam(betas=(0.9, 0.999), eps=1e-8, weight_decay=0)

Likelihood Reconstruction of v_e

(equation 5.2) are considered. The expected number of hits from the shower μ_{sig} is evaluated using interpolation of a three-dimensional histogram depending on r_i, z_i and a_i at a shower energy of 1 PeV (figure 8). The expected number of hits at different shower energies is calculated using the fact that the number of emitted photons scales linearly with the shower energy E_S .

• Former GNN result on samples with other energy (by linear scaling num_photons):

v_{μ} Vertex Sampling

Effective Area of v_{μ}

Figure 15: Effective areas at event reconstruction level for ν_{μ} track events as a function of primary neutrino energy and zenith angle in TRIDENT. At an energy of ~ 100 TeV, the effective area for up-going events is expected to reach 7×10^2 m². Only events with anglular error less than 6 degree are selected to evaluate the effective area.

arXiv:2207.04519

Significance & Sensitivity

arXiv:2207.04519

Comparison with Likelihood Method

Figure 5: Median angular error of GNN (left) and likelihood method (right) depend on energy of v_{μ} . The median angle between the reconstructed track and the true direction of μ and v_{μ} is visualized by the green and red lines, respectively. Color bands exhibits the 68% and 90% quantiles. Black lines are the median angle between direction of μ and v_{μ} .

Track-like Events Reconstruction

Direction reconstruction

- Model is trained on events with track length > 500m.
- Median angular error decreases from 1 degree to 0.1 degree as the energy of ν_{μ} increases.

