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✦ Claims: 

1. focus on theoretical framework/calculations related  to EW precision measurement 

2. rather self-learning materials; more on triggering discussions 

3. loops and legs are not entertaining or even tedious, but crucial building blocks  
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✦ Outline 

1. Precision EW measurements at Z resonance from LEP and SLC 

2. Theory challenges for future EW precision measurements at Z-pole 

3. Precision measurements around threshold of W boson pair 

4. Precision measurements at Higgs factory 

5. Precision measurements around threshold of top-quark pair 



LEP and SLC data at Z resonance
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✦ About 17 million Z boson events recorded at LEP with 4 detectors; 0.6 
million Z boson events recorded by SLD at SLC with an average electron 
polarization of ~70%   
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Figure 1.5: The amount of longitudinal electron polarisation as a function of the number of
recorded Z decays at SLD.

gallium arsenide photo-cathode at the electron source. At that time, the electron polarisation
was only 22%. Shortly thereafter, “strained lattice” photocathodes were introduced, and the
electron polarisation increased significantly, as shown in Figure 1.5. About 60% of the data were
collected in the last two years of SLC running, from 1997 to 1998, with the second to last week
of running producing more than 20000 Z bosons. Much work was invested in the SLC machine
to maintain the electron polarisation at a very high value throughout the production, damping,
acceleration and transfer through the arcs. In addition, to avoid as much as possible any
correlations in the SLC machine or SLD detector, the electron helicity was randomly changed
on a pulse-to-pulse basis by changing the circular polarisation of the laser.

The polarised beam physics programme at the SLC required additional instrumentation
beyond the main SLD detector, most notably, precision polarimetry. At the onset of the
programme, it was hoped that the Compton-scattering polarimeter installed near the beam
interaction point (IP) would reach a relative precision of 1%. In fact, an ultimate precision of
0.5% was achieved, which ensured that polarimetry systematics were never the leading contrib-
utor to the uncertainty of even the highest precision SLD measurements. This device employed
a high-power circularly-polarised laser which was brought into nearly head-on collision with the
electron beam downstream from the IP. Compton scattered electrons were deflected by dipole
magnets and detected in a threshold Cherenkov counter, providing a beam polarisation mea-
surement with good statistical precision every few minutes. Over the course of SLC operation,
significant time was expended in a number of polarimetry cross-checks which served to ensure
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Figure 1.3: The LEP storage ring, showing the locations of the four experiments, and the PS
and SPS accelerators used to pre-accelerate the electron and positron bunches.

Year Centre-of-mass Integrated
energy range luminosity

[GeV] [pb−1]

1989 88.2 – 94.2 1.7
1990 88.2 – 94.2 8.6
1991 88.5 – 93.7 18.9
1992 91.3 28.6
1993 89.4, 91.2, 93.0 40.0
1994 91.2 64.5
1995 89.4, 91.3, 93.0 39.8

Table 1.1: Approximate centre-of-mass energies and integrated luminosities delivered per LEP
experiment. In 1990 and 1991, a total of about 7 pb−1 was taken at off-peak energies, and
20 pb−1 per year in 1993 and in 1995. The total luminosity used by the experiments in the
analyses was smaller by 10–15% due to data taking inefficiencies and data quality cuts.
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Number of Events
Z → qq Z → !+!−

Year A D L O LEP A D L O LEP

1990/91 433 357 416 454 1660 53 36 39 58 186
1992 633 697 678 733 2741 77 70 59 88 294
1993 630 682 646 649 2607 78 75 64 79 296
1994 1640 1310 1359 1601 5910 202 137 127 191 657
1995 735 659 526 659 2579 90 66 54 81 291
Total 4071 3705 3625 4096 15497 500 384 343 497 1724

Table 1.2: The qq and !+!− event statistics, in units of 103, used for Z analyses by the experi-
ments ALEPH (A), DELPHI (D), L3 (L) and OPAL (O).

energy for that “fill”. A fill would continue for up to about 10 hours before the remaining
beams were dumped and the machine refilled. The main bending field was provided by 3280
concrete-loaded dipole magnets, with hundreds of quadrupoles and sextupoles for focusing and
correcting the beams in the arcs and in the straight sections. For LEP-I running, the typical
energy loss per turn of 125 MeV was compensated by a radio-frequency accelerating system
comprised of copper cavities installed in just two of the straight sections, to either side of L3
and OPAL.

Much effort was dedicated to the determination of the energy of the colliding beams. A
precision of about 2 MeV in the centre-of-mass energy was achieved, corresponding to a relative
uncertainty of about 2 · 10−5 on the absolute energy scale. This level of accuracy was vital for
the precision of the measurements of the mass and width of the Z, as described in Chapter 2. In
particular the off-peak energies in the 1993 and 1995 scans were carefully calibrated employing
the technique of resonant depolarisation of the transversely polarised beams [14,15]. In order to
minimise the effects of any long-term instabilities during the energy scans, the centre-of-mass
energy was changed for every new fill of the machine. As a result, the data samples taken above
and below the resonance are well balanced within each year, and the data at each energy are
spread evenly in time. The data recorded within a year around one centre-of-mass energy were
combined to give one measurement at this “energy point”.

The build-up of transverse polarisation due to the emission of synchrotron radiation [16]
was achieved with specially smoothed beam trajectories. Measurements with resonant depolar-
isation were therefore only made outside normal data taking, and typically at the ends of fills.
Numerous potential causes of shifts in the centre-of-mass energy were investigated, and some
unexpected sources identified. These include the effects of earth tides generated by the moon
and sun, and local geological deformations following heavy rainfall or changes in the level of
Lake Geneva. While the beam orbit length was constrained by the RF accelerating system, the
focusing quadrupoles were fixed to the earth and moved with respect to the beam, changing
the effective total bending magnetic field and the beam energy by 10 MeV over several hours.
Leakage currents from electric trains operating in the vicinity provoked a gradual change in
the bending field of the main dipoles, directly affecting the beam energy. The collision en-
ergy at each interaction point also depended for example on the exact configuration of the RF
accelerating system. All these effects are large compared to the less than 2 MeV systematic
uncertainty on the centre-of-mass energy eventually achieved through careful monitoring of the
running conditions and modelling of the beam energy.

18

in unit of 1000



Precision test of SM

5

✦ Determine the Z boson parameters with high precision: its mass, its partial 
and total widths, and its couplings to fermion pairs. These results are 
compared to the predictions of the SM and found to be in good agreement   

effective couplings of charged leptons, gV vs. gA
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Figure 1.15: The neutrino scattering and e+e− annihilation data available in 1987 constrained
the values of gV! and gA! to lie within broad bands, whose intersections helped establish the
validity of the SM and were consistent with the hypothesis of lepton universality. The inset
shows the results of the LEP/SLD measurements at a scale expanded by a factor of 65 (see
Figure 7.3). The flavour-specific measurements demonstrate the universal nature of the lepton
couplings unambiguously on a scale of approximately 0.001.
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Figure 7.3: Comparison of the effective vector and axial-vector coupling constants for leptons
(Tables 7.7 and 7.8). The shaded region in the lepton plot shows the predictions within the SM
for mt = 178.0±4.3 GeV and mH = 300+700

−186 GeV; varying the hadronic vacuum polarisation by

∆α(5)
had(m

2
Z) = 0.02758 ± 0.00035 yields an additional uncertainty on the SM prediction shown

by the arrow labeled ∆α.
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Electroweak pseudo-/precision observables

6

✦ LEP data were analyzed/reported in terms of EWPOs, including for 
the following interpretations of SM or its extensions  A. Freitas, J. Gluza, S. Jadach

Fig. C.1: Construction of EWPOs in data analysis of the LEP

Ref. [193], O(↵1
) QED analytical calculations, and the effective Born amplitudes of the EWPO scheme. As

already noticed and strongly emphasized in Ref. [114], the sticking point was that these scenarios could be
invalidated by the initial–final-state interference (IFI) contributions, for various reasons. For instance, the con-
volution of the ISR structure function involves integration over the effective mass

p
s0 after ISR and before

final-state radiation (FSR). If IFI is switched on, this variable loses its physical meaning. The solution was to
introduce an acollinearity cut, which approximately limited s0, accompanied with a cut-off of the angle of one
of the final fermions, leaving the angle of the other one uncontrolled.

In the (B)!(C) transition in Fig. C.1, an effective Born term is used in the fitter programs instead
of complete EW corrections. The differential distribution of the effective Born term is obtained from spin
amplitudes of the e

�
e
+ ! f f̄ process, with the carefully defined (real) effective coupling constants of � and

Z bosons to electrons and other fermions f = e, µ, ⌧, u, d, s, c, b. In fact, the differential distribution of the
effective Born term in Eq. (1.34) of Ref. [16] is in one-to-one correspondence with the spin amplitudes of
Eq. (C.45), or the Born version of Eqs. (C.70)–(C.71) and (C.72)–(C.75), with adjustable parameters being
MZ, �Z, ↵em(MZ) and Z couplings for each fermion type, af and vf .

This one-to-one correspondence of the parameters of the effective Born term at the amplitude level, that
is, four couplings per fermion, and the mass and width of the Z boson – which will be referred to as EW
‘pseudo-parameters’ (EWPPs)10 – means, in practice, that from their values one easily obtains partial widths
proportional to a2f + v2f , hadronic peak cross-sections, and all possible charge and spin asymmetries, being
simple functions of vf/af (Eqs. (1.37), (1.45), and (1.51)-(1.54) in Ref. [16]), either during the data fitting
procedure or when obtaining final or fitted EWPOs for each experiment.

The list of EWPOs in Ref. [16] representing LEP/SLC data consists of MZ, �Z, �(0)
had, R(0)

f , A(0),f
FB ,

f = e, µ, ⌧, c, b (see Tables 2.5, 2.13, and 5.10 therein). The EWPOs created at stage (C) separately for each
LEP and SLD collaboration were then combined into common EWPOs, with the experimental error reduced
by roughly a factor of two.11 The number of the combined EWPOs was still much greater than the number of

10The prefix ‘pseudo-’ emphasizes the fact that these parameters are different from the Standard Model Lagrangian
parameters.

11In principle, EWPPs can be re-derived from EWPOs after combining over experiments.
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Electroweak pseudo-/precision observables

7

✦ LEP data were analyzed/reported in terms of EWPOs, including for 
the following interpretations of SM or its extensions  

A. Blondel, J. Gluza, S. Jadach, P. Janot, T. Riemann

2. High-precision (better than 100 keV) absolute determination of the centre-of mass energies
at the Z pole and WW threshold, thanks to the availability of transverse polarisation and
the resonant depolarisation. This is a unique feature of the circular lepton colliders, e+e≠

and µ+µ≠. At higher energies, WW, ZZ, and Zg production can be used to constrain the
centre-of-mass energy with precisions of 2 and 5 MeV, at the ZH cross-section maximum
and at the tt̄ threshold, respectively. At all energies, e+e≠ æ µ+µ≠ events, which occur
at a rate in excess of 3 kHz at the Z pole, provide, by themselves, in a matter of minutes,
the determination of the centre-of mass energy spread, the residual di�erence between
the energies of e+ and e≠ beams and (relative) centre-of-mass energy monitoring with a
precision that is more than su�cient for the precision needs of the programme.

3. The clean environmental conditions and an optimised run plan allow a complete pro-
gramme of ancillary measurements of currently precision-limiting input quantities for the
precision EW tests. This is the case for the top quark mass from the scan of the tt̄
production threshold; of the unique, direct, measurement of the QED running coupling
constant at the Z mass from the Z–g interference; of the strong coupling constant by
measurements of the hadronic-to-leptonic branching fractions of the Z, the W, and the t
lepton; and, of course, of the Higgs and Z masses themselves.

For the reader’s convenience, we also include Table A.1.2 from the CDR, showing some
of the most significant FCC-ee experimental accuracies compared with those of the current
measurements. More on the experimental precision of the FCC-ee can be found in volumes 1
and 2 of the CDR documents [3, 4]. The experimenters are working hard to reduce systematic
uncertainties by devising dedicated methods and ancillary measurements; the task of the the-
oretical community will be to ensure that the SM predictions will be precise enough so as not
to spoil the best foreseeable experimental accuracies, i.e., the statistical uncertainties.

If future theory uncertainties match the FCC-ee experimental precision, the many di�erent
measurements from the FCC-ee will provide the capability of exhibiting and deciphering signs
of new physics. Here are two examples: the EFT analysis searching for signs of heavy particles
physics with SM couplings shows the potential to exhibit signs of new particles up to around
70 TeV; with a very di�erent but characteristic pattern, observables involving neutrinos would
show a significant deviation if these neutrinos were mixed with a heavy counterpart at the level
of one part in 100 000, even if those were too heavy to be directly produced.

Table A.1.2 shows that the FCC-ee has the potential to achieve (at least) a 20–100 times
higher precision or better in electroweak precision measurements over the present state-of-the-
art situation. This includes such input quantities as the Z, Higgs, and top masses, and the strong
and QED coupling constants at the Z scale. This extremely favourable situation will require
leap-jumps in the precision of the theoretical computations for Standard Model phenomena,
for all quantities given in Table A.1.2. The theory calculation must also be able to include the
improved input parameters [2,5], which, in the particular case of the FCC-ee, will be measured
within the experimental programme.

The quantities listed in Table A.1.2 are called electroweak precision observables (EWPO)
and encapsulate experimental data after extraction of well-known and controllable QED and
QCD e�ects, in a model-independent manner. They provide a convenient bridge between real
data and the predictions of the SM, or of the SM plus new physics. Contrary to raw experimental
data (like di�erential cross-sections), EWPOs are also well-suited for archiving and long-term
use. Archived EWPOs can be exploited over long periods of time for comparisons with steadily

- 4 -
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improving theoretical calculations of the SM predictions, and for validations of the new physics
models beyond the SM. They are also useful for the comparison and combination of results from
di�erent experiments. However, removing trivial but sizeable QED or QCD e�ects from EWPOs
might induce additional sources of uncertainty. The work needed is well-known concerning QED,
more significant conceptual work may need to be done for QCD.

Let us summarise briefly the mandatory improvements of the calculations of QED e�ects
in EWPOs according to recent work [6]:

1. improved calculation of the additional light fermion pair emissions (for Z boson mass and
width);

2. better calculation of the final-state radiation e�ects in the presence of cut-o�s (for RZ
¸
);

3. implementation of a new QED matrix element in the Monte Carlo (MC) event gener-
ator for low-angle Bhabha processes (for the luminosity determination in view of the
measurement of ‡0

had and other cross-sections);

4. O(–2) calculation for e+e≠ æ Zg (for the determination of Nn);

5. improved MC simulation of t decays (for the e�ective weak mixing angle and tau branching
ratio measurements);

6. QED e�ects at the W pair production threshold (for measurement of the W mass and
width);

7. initial–final-state interference (e.g., for the forward–backward charge asymmetry of lepton
pairs around the Z peak).

For more on the related subject of the separation of QED e�ects from weak quantities
at the FCC-ee precision and generally on the improvements in the definition of EWPOs, see
recent discussions in Ref. [2]. A similar systematic discussion of the QCD e�ects in EWPOs is
in progress, see Ref. [2] and Section B.2 in this report.

For the FCC-ee data analysis, owing to the rise of non-factorisable QED e�ects above
the experimental uncertainties, direct use of MC programs might become the standard for
fitting EWPOs to the data, even at the Tera-Z stage [2, 6, 7]. New MC event generators will
have to provide built-in provisions for an e�cient direct fitting of EWPOs to data, which are
not present in the LEP legacy MCs. Section C.3 of Ref. [2] describes possible forms of future
EWPOs at FCC-ee experiments and specifies the new required MC software. It is emphasized
there that, owing to non-factorisable QED contributions, the multiphoton QED e�ects will have
to be factorised at the amplitude level. Additional quantities available in tau and heavy flavour
physics will reach 10≠5 precision and are likely to need similar attention.

Very precise determinations of MW at the FCC-ee will rely on the precise measurement
of the cross-section of the e+e≠ æ W+W≠ process near the threshold. A statistical precision
of 0.04% of this cross-section translates into 0.6 MeV experimental uncertainty on MW, com-
pared with the current 3 MeV theoretical uncertainty for MW. Therefore, improved theoretical
calculations are required for the generic e+e≠ æ 4f process near the WW threshold with an
improvement of one order of magnitude. The most economical solution will be to combine the
O(–1) calculation for the e+e≠ æ 4f process with the O(–2) calculation for the doubly resonant
e+e≠ æ W+W≠ subprocess. The former calculation is already available [8]. The latter will need

- 6 -
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Z lineshape and leptonic F-B asymmetries  

8

✦ 9 EWPOs including forward backward asymmetry for each of 3 
charged leptons provide a complete (hadron-inclusive) description of 
the Z resonance  

A0
LRFB for each of the final states e+e−, µ+µ−, τ+τ− and qq, where q includes not only b- and

c-quarks, but also s-quarks.
In contrast to the partial widths, which are defined using the full complex couplings in order

to ensure that the sum over all partial widths equals the total width, the pole asymmetries are
defined purely in terms of the real parts of the effective Z couplings, and bear particularly direct
relationships to the relevant asymmetry parameters:

A0, f
FB =

3

4
AeAf (1.66)

A0
LR = Ae (1.67)

A0
LRFB =

3

4
Af (1.68)

〈P0
τ 〉 = − Aτ (1.69)

Apol,0
FB = −

3

4
Ae . (1.70)

The negative sign of the quantities involving the polarisation is simply a consequence of defining
the polarisation of a right-handed fermion as positive in a world in which left-handed couplings
dominate. It should be noted that although the pole asymmetries are defined in terms of only
the real parts of the couplings, the complex parts are taken into account when correcting the
measurements to yield pole quantities.

Using the measurements of Ae, the parameters Aµ, Aτ , Ab and Ac can also be inferred
from forward-backward asymmetry measurements at LEP via Equation 1.66. Thus, the LEP
and SLC results form a complementary and practically complete set of Af measurements.

When the couplings conform to the SM structure, then

gVf

gAf
= 1 −

2Qf

T f
3

sin2 θf
eff = 1 − 4|Qf | sin2 θf

eff , (1.71)

and the expected variation of Af with sin2 θf
eff is shown in Figure 1.14. Due to the proximity of

sin2 θf
eff to 1/4, A" and the leptonic forward-backward asymmetries at

√
s = mZ are small, but

very sensitive to sin2 θf
eff . Compared with the leptons, the coupling parameters of the quarks in

the SM are determined more by their charge and weak isospin assignments than by the value of
sin2 θf

eff . For down-type quarks, as can be seen from Figure 1.14, the relative sensitivity of Aq

to changes in sin2 θq
eff is a factor of almost 100 less than it is for A". It is therefore of particular

interest to compare the relatively static SM prediction for Aq with measurement. On the
other hand, if the SM prediction for Aq is assumed to be valid, the observed forward-backward
asymmetries for quarks provide a sensitive measurement of sin2 θlept

eff via Equation 1.66.

1.5.4 Relating Theory and Experiment

The parameters introduced in the preceding subsections, which describe the main features of all
measurements around the Z resonance, are not “realistic observables” like the underlying mea-
surements themselves, but are defined quantities with significant theoretical corrections. There-
fore they are commonly named pseudo-observables. Where necessary, the pseudo-observables
are denoted by a superscript 0; for example, σhad is the measured hadronic cross-section, whereas
σ0

had is the pole cross-section derived from the measurements. Similarly, Rb is the measured

39

The total cross-section arising from the cos θ-symmetric Z production term can also be
written in terms of the partial decay widths of the initial and final states, Γee and Γff ,

σZ
ff = σpeak

ff

sΓ2
Z

(s − m2
Z)2 + s2Γ2

Z/m
2
Z

, (1.40)

where

σpeak

ff
=

1

RQED
σ0

ff (1.41)

and

σ0
ff =

12π

m2
Z

ΓeeΓff

Γ2
Z

. (1.42)

The term 1/RQED removes the final state QED correction included in the definition of Γee.
The overall hadronic cross-section is parametrised in terms of the hadronic width given by

the sum over all quark final states,

Γhad =
∑

q!=t

Γqq. (1.43)

The invisible width from Z decays to neutrinos, Γinv = NνΓνν , where Nν is the number of light
neutrino species, is determined from the measurements of the decay widths to all visible final
states and the total width,

ΓZ = Γee + Γµµ + Γττ + Γhad + Γinv. (1.44)

Because the measured cross-sections depend on products of the partial widths and also on
the total width, the widths constitute a highly correlated parameter set. In order to reduce
correlations among the fit parameters, an experimentally-motivated set of six parameters is
used to describe the total hadronic and leptonic cross-sections around the Z peak. These are

• the mass of the Z, mZ;

• the Z total width, ΓZ;

• the “hadronic pole cross-section”,

σ0
had ≡

12π

m2
Z

ΓeeΓhad

Γ2
Z

; (1.45)

• the three ratios

R0
e ≡ Γhad/Γee, R0

µ ≡ Γhad/Γµµ and R0
τ ≡ Γhad/Γττ . (1.46)

If lepton universality is assumed, the last three ratios reduce to a single parameter:

R0
# ≡ Γhad/Γ##, (1.47)

where Γ## is the partial width of the Z into one massless charged lepton flavour. (Due to
the mass of the tau lepton, even with the assumption of lepton universality, Γττ differs
from Γ## by about δτ = −0.23%.)
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the differential cross-sections specific to each initial- and final-state fermion helicity are:

dσLl

d cos θ
∝ g2

Leg
2
Lf(1 + cos θ)2 (1.51)

dσRr

d cos θ
∝ g2

Reg
2
Rf(1 + cos θ)2 (1.52)

dσLr

d cos θ
∝ g2

Leg
2
Rf(1 − cos θ)2 (1.53)

dσRl

d cos θ
∝ g2

Reg
2
Lf(1 − cos θ)2. (1.54)

Here the upper-case subscript of the cross-section defines the helicity of the initial-state electron,
while the lower-case defines the helicity of the final-state fermion. Note that the designations
”+” and ”−” are sometimes used in place of ”r” and ”l”, particularly when discussing τ
polarisation. Due to the point-like nature of the couplings and the negligible masses of the
fermions involved, the helicity of the anti-fermion is opposite that of the fermion at each vertex.

From these basic expressions the Born level differential cross-section for Z exchange only,
summed over final-state helicities, assuming an unpolarised positron beam but allowing polar-
isation of the electron beam, is:

dσff

d cos θ
=

3

8
σtot

ff

[

(1 − PeAe)(1 + cos2 θ) + 2(Ae − Pe)Af cos θ
]

. (1.55)

The electron beam polarisation, Pe, is taken as positive for right-handed beam helicity, negative
for left. The dependence on the fermion couplings has been incorporated into convenient
asymmetry parameters, Af :

Af =
g2
Lf − g2

Rf

g2
Lf + g2

Rf

=
2gVfgAf

g2
Vf + g2

Af

= 2
gVf/gAf

1 + (gVf/gAf)2
. (1.56)

As the third form makes clear, the asymmetry parameters depend only on the ratio of the
couplings, and within the SM bear a one-to-one relation with sin2 θf

eff .
Although the asymmetry analyses typically utilise maximum likelihood fits to the expected

angular distributions, the simple form of Equation 1.55 also allows the coefficients of the cos θ
and (1 + cos2 θ) terms to be determined in terms of the integral cross-sections over the forward
or backward hemispheres. Naturally, at SLC, the two helicity states of the polarised electron
beam also need to be distinguished.

Designating the integrals over the forward and backward hemispheres with subscripts F
and B and the cross-sections for right and left electron helicities with subscripts R and L, three
basic asymmetries can be measured:

AFB =
σF − σB

σF + σB
(1.57)

ALR =
σL − σR

σL + σR

1

〈|Pe|〉
(1.58)

ALRFB =
(σF − σB)L − (σF − σB)R

(σF + σB)L + (σF + σB)R

1

〈|Pe|〉
. (1.59)

Inspection of Equation 1.55 shows that the forward-backward asymmetry, AFB, picks out the
coefficient AeAf in the cos θ term, the left-right asymmetry, ALR, picks out the coefficient Ae

in the (1 + cos2 θ) term, and the left-right forward-backward asymmetry [37], ALRFB, picks out
the coefficient Af in the cos θ term.
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The polarisation of a final-state fermion is the difference between the cross-sections for right-
and left-handed final-state helicities divided by their sum:

Pf =
d(σr − σl)

d cos θ

/

d(σr + σl)

d cos θ
. (1.60)

At Born level the numerator and denominator can be derived from the helicity-specific cross-
sections of Equations 1.51 to 1.54:

d(σr − σl)

d cos θ
= −

3

8
σtot

ff

[

Af(1 + cos2 θ) + 2Ae cos θ
]

(1.61)

d(σr + σl)

d cos θ
=

3

8
σtot

ff

[

(1 + cos2 θ) + 2AeAf cos θ
]

. (1.62)

Here we assume Z exchange only, and unpolarised beams. The average final-state fermion
polarisation, 〈Pf〉, as well as the forward-backward polarisation asymmetry, Apol

FB, can be found
in terms of the helicity cross-sections integrated over the forward and backward hemispheres:

〈Pf〉 =
σr − σl

σr + σl
(1.63)

Apol
FB =

(σr − σl)F − (σr − σl)B

(σr + σl)F + (σr + σl)B
. (1.64)

Again, examination of Equations 1.61 and 1.62 shows that 〈Pf〉 picks out the coefficient Af in
the (1 + cos2 θ) term and Apol

FB picks out the coefficient Ae in the cos θ term.
The net polarisation of a final-state fermion as a function of cos θ is simply the ratio of

Equations 1.61 and 1.62:

Pf(cos θ) = −
Af(1 + cos2 θ) + 2Ae cos θ

(1 + cos2 θ) + 2AfAe cos θ
. (1.65)

Since the polarisation of the final-state fermion can only be measured in the case of the τ -lepton,
which decays in a parity violating manner within the detectors, these quantities are measured
only for the final state τ+τ−. As in the case of the other asymmetries, a maximum-likelihood
fit to Equation 1.65 is used in the actual τ polarisation analyses to extract both 〈Pτ 〉 and Apol

FB,
rather than using the simpler integral expressions of Equations 1.63 and 1.64.

The measured asymmetries and polarisations are corrected for radiative effects, γ exchange
and γ–Z interference to yield “pole” quantities designated with a superscript 0. In the case
where the final state is e+e−, important corrections for t-channel scattering must also be taken
into account. QED corrections [38] to A"

FB are as large as the value of the asymmetry itself,
and must be understood precisely (see Section 2.4.4). Off-peak, the contributions from γ–Z
interference to the forward-backward asymmetries become even larger. The corrections to ALR,
ALRFB, 〈Pτ 〉 and Apol

FB are relatively small.
At LEP the forward-backward asymmetries, A0, e

FB, A0, µ
FB , A0, τ

FB and A0, q
FB are measured for

final states e+e−, µ+µ−, τ+τ− and qq. Tagging methods for b- and c-quarks allow qq forward-
backward asymmetries for these flavours to be measured precisely. All four LEP experiments
measure Pτ .

SLD measures the asymmetries involving initial-state polarisation. The left-right asymme-
try, A0

LR, is independent of the final state, and the measurement is dominated by e+e− → qq.
Despite the smaller event sample available to SLD, the measurement of A0

LR provided the sin-
gle most precise determination of the initial state coupling (Z to electron). SLD also measures
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The total cross-section arising from the cos θ-symmetric Z production term can also be
written in terms of the partial decay widths of the initial and final states, Γee and Γff ,

σZ
ff = σpeak

ff

sΓ2
Z

(s − m2
Z)2 + s2Γ2

Z/m
2
Z

, (1.40)

where

σpeak

ff
=

1

RQED
σ0

ff (1.41)

and

σ0
ff =

12π

m2
Z

ΓeeΓff

Γ2
Z

. (1.42)

The term 1/RQED removes the final state QED correction included in the definition of Γee.
The overall hadronic cross-section is parametrised in terms of the hadronic width given by

the sum over all quark final states,

Γhad =
∑

q!=t

Γqq. (1.43)

The invisible width from Z decays to neutrinos, Γinv = NνΓνν , where Nν is the number of light
neutrino species, is determined from the measurements of the decay widths to all visible final
states and the total width,

ΓZ = Γee + Γµµ + Γττ + Γhad + Γinv. (1.44)

Because the measured cross-sections depend on products of the partial widths and also on
the total width, the widths constitute a highly correlated parameter set. In order to reduce
correlations among the fit parameters, an experimentally-motivated set of six parameters is
used to describe the total hadronic and leptonic cross-sections around the Z peak. These are

• the mass of the Z, mZ;

• the Z total width, ΓZ;

• the “hadronic pole cross-section”,

σ0
had ≡

12π

m2
Z

ΓeeΓhad

Γ2
Z

; (1.45)

• the three ratios

R0
e ≡ Γhad/Γee, R0

µ ≡ Γhad/Γµµ and R0
τ ≡ Γhad/Γττ . (1.46)

If lepton universality is assumed, the last three ratios reduce to a single parameter:

R0
# ≡ Γhad/Γ##, (1.47)

where Γ## is the partial width of the Z into one massless charged lepton flavour. (Due to
the mass of the tau lepton, even with the assumption of lepton universality, Γττ differs
from Γ## by about δτ = −0.23%.)

34

The polarisation of a final-state fermion is the difference between the cross-sections for right-
and left-handed final-state helicities divided by their sum:
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d cos θ
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closely related to direct 
experiment observables



QED deconvolution

9

✦ So-called “deconvolution” of QED effects is the procedure of 
removing universal (process independent) QED effects from 
experimental data for the total and angular differential cross sections   
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Figure 1.11: Some of the lowest order QED corrections to fermion-pair production. Together
with photonic box diagrams, which give much smaller contributions, these form a gauge-
invariant sub-set included in the radiator functions HQED. Weak boxes are added explicitly
to the kernel cross-section [32].

electroweak/QCD corrections. The inclusion of the complex parts of the couplings in the defi-
nition of the leptonic width, Γ!!, leads to changes of 0.15 per-mille corresponding to only 15%
of the LEP-combined experimental error on Γ!!. The QCD corrections only affect final states
containing quarks. To first order in αS for massless quarks, the QCD corrections are flavour
independent and the same for vector and axial-vector contributions:

RA,QCD = RV,QCD = RQCD = 1 +
αS(m2

Z)

π
+ · · · . (1.38)

The hadronic partial width therefore depends strongly on αS. The final state QED correction
is formally similar, but much smaller due to the smaller size of the electromagnetic coupling:

RA,QED = RV,QED = RQED = 1 +
3

4
Q2

f

α(m2
Z)

π
+ · · · . (1.39)
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electroweak/QCD corrections. The inclusion of the complex parts of the couplings in the defi-
nition of the leptonic width, Γ!!, leads to changes of 0.15 per-mille corresponding to only 15%
of the LEP-combined experimental error on Γ!!. The QCD corrections only affect final states
containing quarks. To first order in αS for massless quarks, the QCD corrections are flavour
independent and the same for vector and axial-vector contributions:

RA,QCD = RV,QCD = RQCD = 1 +
αS(m2

Z)

π
+ · · · . (1.38)

The hadronic partial width therefore depends strongly on αS. The final state QED correction
is formally similar, but much smaller due to the smaller size of the electromagnetic coupling:

RA,QED = RV,QED = RQED = 1 +
3

4
Q2

f

α(m2
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π
+ · · · . (1.39)
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Chapter C

Theory meets experiment

1 Cross-sections and electroweak pseudo-observables (EWPOs)
Authors: Janusz Gluza, Stanisław Jadach, Tord Riemann
Corresponding author: Tord Riemann [Tord.Riemann@cern.ch]

The interpretation of real cross-sections at the Z peak is a delicate problem for the FCC-ee, owing to its in-
credible precision. We consider here exclusively fermion pair production. The real cross-section describes the
reaction

e
+
e
� ! f

+
f
�
+ invisible (n � + e

+
e
�
pairs + · · · ), (C.1)

i.e., fermion pair production including those additional final-state configurations that stay invisible in the de-
tector. It is well-known that one may describe such a reaction with multidimensional generic ansatzes, e.g.,

�e+e�!f+f�+···
(s) =

Z
dx1dx2 g(x1) g(x2) �

e+e�!f+f�
(s0) �(s0 � x1x2s). (C.2)

In the one-loop approximation with soft photon exponentiation, or the flux function approach, x2 = 1 � x1,
resulting in the generic ansatz

�e+e�!f+f�+···
(s) =

Z
dx f(x) �e+e�!f+f�

(s0) �(x� s0/s). (C.3)

The �e+e�!f+f� is called the underlying hard scattering cross-section or the effective Born cross-section. The
kernel functions g(x) and f(x) depend on the process, the observable to be described, and experimental con-
ditions, such as the choice of variables and cuts. Further, if initial–final-state radiation interferences are con-
sidered, combined with box diagram contributions, the hard scattering basic Born function in the flux function
approach has a more general structure [32, 35, 85–91]:

�e+e�!f+f�
(s0) ! �e+e�!f+f�

(s, s0). (C.4)

An example from Ref. [91] is reproduced in Eq. (C.20).
Concerning the extraction of physical parameters from real cross-sections, one may follow two different

strategies.

1. Direct fits of �real in terms of such quantities as MZ,�Z and other parameters. The other parameters are
called electroweak pseudo-observables (EWPOs).

2. Extraction of the various hard 2 ! 2 scattering cross-sections �(0)
tot,FB,...

from the real cross-sections
�real and a subsequent analysis of the hard cross-sections in terms of such quantities as MZ,�Z and
other parameters, such as Af .

In practice, at the LEP, the second approach was chosen by all experimental collaborations [16].
For a Z line shape analysis, the structure functions or flux functions are assumed to be known from

theoretical calculations with sufficient accuracy to match the experimental demands. Before the unfolding, data
have to be prepared using Monte Carlo programs, e.g.,KKMC [34], to match the simplified unfolding conditions
of analysis programs, e.g., ZFITTER [32, 41, 90, 92, 93].
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The total cross-section and asymmetries are defined generically through

�real
A (s) =

Z
ds0

s
⇢tot(s

0/s) �(0)
A (s0), A = tot,LR, pol,LRpol, (C.16)

�real
A (s) =

Z
ds0

s
⇢FB(s

0/s) �(0)
A (s0), A = FB,LRFB, polFB,LRpolFB. (C.17)

using the notation

s0 ⌘ sf+f� = s

✓
1� 2E�p

s

◆
, (C.18)

R ⌘ 1� v =
s0

s
. (C.19)

Here, s is the centre-of-mass energy squared, s0 the invariant mass squared of the final fermion pair, and E�

the photon energy. As indicated in these equations, the flux functions ⇢T,FB for cos ✓-even and for cos ✓-odd
integrals differ. They also depend on the other experimental cuts. Only four of the seven observables shown
are independent because the 2 ! 2 scattering of (practically) massless external spin-1/2 particles has only four
helicity degrees of freedom.

When taking the complete photonic O(↵) corrections into account, including initial- and final-state radi-
ations and their interferences, the cross-section foldings have the following general structure:

�real
A (s) = �(0)

A (s) + �real,ini
A (s) + �real,fin

A (s) + �real,int
A (s)

= �(0)
A (s) +

Z
dR�(0)

A (s0)⇢iniA (R) + �(0)
A (s)

Z
dR⇢finA (R)

+

Z
dR

X

Vi,Vj=�,Z

�(0)
Ā

(s, s0, i, j)⇢intA (R, i, j). (C.20)

In the initial–final-state interferences, the effective Born cross-sections depend on both s and s0, as well as
on the type of exchanged vector particles Vi (e.g., photon or Z). Additionally, one has to be aware in the
interference that for A = tot,LR, pol one needs Ā = FB and for A = FB,LRFB one needs Ā = tot. The
compositions of real cross-sections are modified when contributions are exponentiated, e.g., for initial-state soft
photon exponentiation of �tot [86, 96]:

�(0)
tot(s) + �real,ini

tot (s) !
Z

dR �(0)
tot(s

0
) ⇢initot(R), (C.21)

⇢initot(R) =
�
1 + S̄

�
�(1�R)

��1
+ H̄ ini

tot(R), (C.22)

S̄ =
3

4
� +

↵

⇡
Q2

e

✓
⇡2

3
� 1

2

◆
+ h.o., (C.23)

� =
2↵

⇡
Q2

eLe, (C.24)

Le =

✓
ln

s

m2
e
� 1

◆
, (C.25)

H̄ ini
T (R) =


HBM(R)� �

1�R

�
+ h.o., (C.26)

where ‘h.o.’ stands for higher orders, and HBM(R) is the Bonneau–Martin kernel [97]:

HBM(R) =
1

2

1 +R2

1�R
�. (C.27)

20

Chapter C

Theory meets experiment

1 Cross-sections and electroweak pseudo-observables (EWPOs)
Authors: Janusz Gluza, Stanisław Jadach, Tord Riemann
Corresponding author: Tord Riemann [Tord.Riemann@cern.ch]

The interpretation of real cross-sections at the Z peak is a delicate problem for the FCC-ee, owing to its in-
credible precision. We consider here exclusively fermion pair production. The real cross-section describes the
reaction

e
+
e
� ! f

+
f
�
+ invisible (n � + e

+
e
�
pairs + · · · ), (C.1)

i.e., fermion pair production including those additional final-state configurations that stay invisible in the de-
tector. It is well-known that one may describe such a reaction with multidimensional generic ansatzes, e.g.,

�e+e�!f+f�+···
(s) =

Z
dx1dx2 g(x1) g(x2) �

e+e�!f+f�
(s0) �(s0 � x1x2s). (C.2)

In the one-loop approximation with soft photon exponentiation, or the flux function approach, x2 = 1 � x1,
resulting in the generic ansatz

�e+e�!f+f�+···
(s) =

Z
dx f(x) �e+e�!f+f�

(s0) �(x� s0/s). (C.3)

The �e+e�!f+f� is called the underlying hard scattering cross-section or the effective Born cross-section. The
kernel functions g(x) and f(x) depend on the process, the observable to be described, and experimental con-
ditions, such as the choice of variables and cuts. Further, if initial–final-state radiation interferences are con-
sidered, combined with box diagram contributions, the hard scattering basic Born function in the flux function
approach has a more general structure [32, 35, 85–91]:

�e+e�!f+f�
(s0) ! �e+e�!f+f�

(s, s0). (C.4)

An example from Ref. [91] is reproduced in Eq. (C.20).
Concerning the extraction of physical parameters from real cross-sections, one may follow two different

strategies.

1. Direct fits of �real in terms of such quantities as MZ,�Z and other parameters. The other parameters are
called electroweak pseudo-observables (EWPOs).

2. Extraction of the various hard 2 ! 2 scattering cross-sections �(0)
tot,FB,...

from the real cross-sections
�real and a subsequent analysis of the hard cross-sections in terms of such quantities as MZ,�Z and
other parameters, such as Af .

In practice, at the LEP, the second approach was chosen by all experimental collaborations [16].
For a Z line shape analysis, the structure functions or flux functions are assumed to be known from

theoretical calculations with sufficient accuracy to match the experimental demands. Before the unfolding, data
have to be prepared using Monte Carlo programs, e.g.,KKMC [34], to match the simplified unfolding conditions
of analysis programs, e.g., ZFITTER [32, 41, 90, 92, 93].

17

J. Gluza, S. Jadach, T. Riemann

The total cross-section and asymmetries are defined generically through

�real
A (s) =

Z
ds0

s
⇢tot(s

0/s) �(0)
A (s0), A = tot,LR, pol,LRpol, (C.16)

�real
A (s) =

Z
ds0

s
⇢FB(s

0/s) �(0)
A (s0), A = FB,LRFB, polFB,LRpolFB. (C.17)

using the notation

s0 ⌘ sf+f� = s

✓
1� 2E�p

s

◆
, (C.18)

R ⌘ 1� v =
s0

s
. (C.19)

Here, s is the centre-of-mass energy squared, s0 the invariant mass squared of the final fermion pair, and E�

the photon energy. As indicated in these equations, the flux functions ⇢T,FB for cos ✓-even and for cos ✓-odd
integrals differ. They also depend on the other experimental cuts. Only four of the seven observables shown
are independent because the 2 ! 2 scattering of (practically) massless external spin-1/2 particles has only four
helicity degrees of freedom.

When taking the complete photonic O(↵) corrections into account, including initial- and final-state radi-
ations and their interferences, the cross-section foldings have the following general structure:

�real
A (s) = �(0)

A (s) + �real,ini
A (s) + �real,fin

A (s) + �real,int
A (s)

= �(0)
A (s) +

Z
dR�(0)

A (s0)⇢iniA (R) + �(0)
A (s)

Z
dR⇢finA (R)

+

Z
dR

X

Vi,Vj=�,Z

�(0)
Ā
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HBM(R)� �

1�R

�
+ h.o., (C.26)

where ‘h.o.’ stands for higher orders, and HBM(R) is the Bonneau–Martin kernel [97]:

HBM(R) =
1

2

1 +R2

1�R
�. (C.27)
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QED deconvolution

10

✦ So-called “deconvolution” of QED effects is the procedure of 
removing universal (process independent) QED effects from 
experimental data for the total and angular differential cross sections   
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Figure 1.12: Average over measurements of the hadronic cross-sections (top) and of the muon
forward-backward asymmetry (bottom) by the four experiments, as a function of centre-of-mass
energy. The full line represents the results of model-independent fits to the measurements, as
outlined in Section 1.5. Correcting for QED photonic effects yields the dashed curves, which
define the Z parameters described in the text.
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define the Z parameters described in the text.
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✦ The value of chi2/d.o.f of 36.5/31 for the combination of the four LEP 
sets of nine pseudo-observables with five parameters (assuming 
lepton universality) 
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Figure 2.9: Measurements of mZ, ΓZ,
σ0

had, R0
! and A0, !

FB. The averages indicated
were obtained using the common errors
and combination method discussed in
the text. The values of χ2 per degree of
freedom were calculated considering error
correlations between measurements of the
same parameter, but not error correlations
between different parameters.
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✦ Deconvoluted cross sections/EWPOs around the Z resonance are 
matched onto a born-type structure using the complex-valued 
effective coupling constants   

from ∆rw implicitly through sin2 θW, as can be seen in Equation 1.26. Here the implicit
correction is of opposite sign, and in fact dominates the direct correction, so that the mt and
mH dependences of sin2 θlept

eff are opposite in sign from the dependences of ∆κse described in
Equation 1.20.

The discussion of radiative corrections given here is leading order only. The actual calcu-
lations used in fits (e.g., Chapters 7 and 8) are performed to higher order, using the programs
TOPAZ0 [30] and ZFITTER [31]. The interested reader is encouraged to consult the authori-
tative discussion in Reference 32.

1.5 The Process e+e− → ff

The differential cross-sections for fermion pair production (see Figure 1.1) around the Z res-
onance can be cast into a Born-type structure using the complex-valued effective coupling
constants given in the previous section. Effects from photon vacuum polarisation are taken
into account by the running electromagnetic coupling constant (Equation 1.30), which also ac-
quires a small imaginary piece. Neglecting initial and final state photon radiation, final state
gluon radiation and fermion masses, the electroweak kernel cross-section for unpolarised beams
can thus be written as the sum of three contributions, from s-channel γ and Z exchange and
from their interference [32],

2s

π

1

N f
c

dσew

dcos θ
(e+e− → ff) =

|α(s)Qf |2 (1 + cos2 θ)
︸ ︷︷ ︸

σγ

−8#
{

α∗(s)Qfχ(s)
[

GVeGVf(1 + cos2 θ) + 2GAeGAfcos θ
]}

︸ ︷︷ ︸

γ–Z interference

+16|χ(s)|2 [(|GVe|2 + |GAe|2)(|GVf |2 + |GAf |2)(1 + cos2 θ)
+8# {GVeGAe

∗}# {GVfGAf
∗} cos θ]

︸ ︷︷ ︸

σZ

(1.34)

with:

χ(s) =
GFm2

Z

8π
√

2

s

s − m2
Z + isΓZ/mZ

, (1.35)

where θ is the scattering angle of the out-going fermion with respect to the direction of the e−.
The colour factor N f

c is one for leptons (f=νe, νµ, ντ , e, µ, τ) and three for quarks (f=d, u, s,
c, b), and χ(s) is the propagator term with a Breit-Wigner denominator with an s-dependent
width.

If the couplings are left free to depart from their SM values, the above expression allows
the resonance properties of the Z to be parametrised in a very model-independent manner.
Essentially the only assumptions imposed by Equation 1.34 are that the Z possesses vector
and axial-vector couplings to fermions, has spin 1, and interferes with the photon. Certain SM
assumptions are nevertheless employed when extracting and interpreting the couplings; these
are discussed in Sections 1.5.4 and 2.5.3.
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Figure 1.9: Higher-order corrections to the gauge boson propagators due to boson and fermion
loops.

These tree-level quantities are modified by radiative corrections to the propagators and vertices
such as those shown in Figures 1.9 and 1.10. When these corrections are renormalized in the
“on-shell” scheme [26], which we adopt here, the form of Equation 1.5 is maintained, and taken
to define the on-shell electroweak mixing angle, θW, to all orders, in terms of the vector boson
pole masses:

ρ0 =
m2

W

m2
Z cos2 θW

. (1.10)

In the following, ρ0 = 1 is assumed.
The bulk of the electroweak corrections [25] to the couplings at the Z-pole is absorbed into

complex form factors, Rf for the overall scale and Kf for the on-shell electroweak mixing angle,
resulting in complex effective couplings:

GVf =
√

Rf (T f
3 − 2QfKf sin2 θW) (1.11)

GAf =
√

Rf T f
3 . (1.12)

In terms of the real parts of the complex form factors,

ρf ≡ #(Rf) = 1 + ∆ρse + ∆ρf (1.13)

κf ≡ #(Kf) = 1 + ∆κse + ∆κf , (1.14)

the effective electroweak mixing angle and the real effective couplings are defined as:

sin2 θf
eff ≡ κf sin2 θW (1.15)

gVf ≡ √
ρf (T f

3 − 2Qf sin2 θf
eff) (1.16)

gAf ≡
√
ρf T f

3 , (1.17)
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✦ Further electroweak corrections are needed to relate SM theory/input 
parameters to EWPOs/effective couplings at high accuracy
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In terms of the real parts of the complex form factors,

ρf ≡ #(Rf) = 1 + ∆ρse + ∆ρf (1.13)
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the effective electroweak mixing angle and the real effective couplings are defined as:
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Figure 1.10: Vertex corrections to the process e+e− → bb.

so that:

gVf

gAf
= "

(GVf

GAf

)

= 1 − 4|Qf | sin2 θf
eff . (1.18)

The quantities ∆ρse and ∆κse are universal corrections arising from the propagator self-
energies, while ∆ρf and ∆κf are flavour-specific vertex corrections. For simplicity we ignore
the small imaginary components of these corrections in most of the following discussion. The
leading order terms in ∆ρse and ∆κse for mH $ mW are [27]:

∆ρse =
3GFm2

W

8
√

2π2

[

m2
t

m2
W

−
sin2 θW
cos2 θW

(

ln
m2

H

m2
W

−
5

6

)

+ · · ·
]

(1.19)

∆κse =
3GFm2

W

8
√

2π2

[

m2
t

m2
W

cos2 θW
sin2 θW

−
10

9

(

ln
m2

H

m2
W

−
5

6

)

+ · · ·
]

(1.20)

For mH & mW, the Higgs terms are modified, for example:

∆ρse =
3GFm2

W

8
√

2π2

[

m2
t

m2
W

+
2

3

m2
Z

m2
W

ln
m2

H

m2
Z

−
7π

3

mHmZ

m2
W

+ · · ·
]

(1.21)

where only internal Higgs loops are considered. Note the change of sign in the slope of the
Higgs correction for low mH seen in Equation 1.21 compared to Equation 1.19, which is due to
contributions from the derivative of the Z self-energy with respect to momentum transfer [28].
Existence of the process e+e− → Z∗H (Higgsstrahlung) would tend to reduce the mH dependence
in Equation 1.21 [29]. The radiative corrections have a quadratic dependence on the top quark
mass and a weaker logarithmic dependence on the Higgs boson mass. The flavour dependence
is very small for all fermions, except for the b-quark, where the effects of the diagrams shown in
Figure 1.10 are significant, due to the large mass splitting between the bottom and top quarks
and the size of the diagonal CKM matrix element |Vtb| ' 1 , resulting in a significant additional
contribution for bb production [28] (The effects of the off-diagonal CKM matrix elements are
here negligible.):

∆κb =
GFm2

t

4
√

2π2
+ · · · , (1.22)

∆ρb = −2∆κb + · · · . (1.23)

By interpreting the Z-pole measurements in terms of these corrections, the top quark mass
can be determined indirectly, and compared to the direct measurements. The Z-pole measure-
ments, even when taken alone, have sufficient power to separate the Higgs and top corrections
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the differential cross-sections specific to each initial- and final-state fermion helicity are:

dσLl

d cos θ
∝ g2

Leg
2
Lf(1 + cos θ)2 (1.51)

dσRr

d cos θ
∝ g2

Reg
2
Rf(1 + cos θ)2 (1.52)

dσLr

d cos θ
∝ g2

Leg
2
Rf(1 − cos θ)2 (1.53)

dσRl

d cos θ
∝ g2

Reg
2
Lf(1 − cos θ)2. (1.54)

Here the upper-case subscript of the cross-section defines the helicity of the initial-state electron,
while the lower-case defines the helicity of the final-state fermion. Note that the designations
”+” and ”−” are sometimes used in place of ”r” and ”l”, particularly when discussing τ
polarisation. Due to the point-like nature of the couplings and the negligible masses of the
fermions involved, the helicity of the anti-fermion is opposite that of the fermion at each vertex.

From these basic expressions the Born level differential cross-section for Z exchange only,
summed over final-state helicities, assuming an unpolarised positron beam but allowing polar-
isation of the electron beam, is:

dσff

d cos θ
=

3

8
σtot

ff

[

(1 − PeAe)(1 + cos2 θ) + 2(Ae − Pe)Af cos θ
]

. (1.55)

The electron beam polarisation, Pe, is taken as positive for right-handed beam helicity, negative
for left. The dependence on the fermion couplings has been incorporated into convenient
asymmetry parameters, Af :

Af =
g2
Lf − g2

Rf

g2
Lf + g2

Rf

=
2gVfgAf

g2
Vf + g2

Af

= 2
gVf/gAf

1 + (gVf/gAf)2
. (1.56)

As the third form makes clear, the asymmetry parameters depend only on the ratio of the
couplings, and within the SM bear a one-to-one relation with sin2 θf

eff .
Although the asymmetry analyses typically utilise maximum likelihood fits to the expected

angular distributions, the simple form of Equation 1.55 also allows the coefficients of the cos θ
and (1 + cos2 θ) terms to be determined in terms of the integral cross-sections over the forward
or backward hemispheres. Naturally, at SLC, the two helicity states of the polarised electron
beam also need to be distinguished.

Designating the integrals over the forward and backward hemispheres with subscripts F
and B and the cross-sections for right and left electron helicities with subscripts R and L, three
basic asymmetries can be measured:

AFB =
σF − σB

σF + σB
(1.57)

ALR =
σL − σR

σL + σR

1

〈|Pe|〉
(1.58)

ALRFB =
(σF − σB)L − (σF − σB)R

(σF + σB)L + (σF + σB)R

1

〈|Pe|〉
. (1.59)

Inspection of Equation 1.55 shows that the forward-backward asymmetry, AFB, picks out the
coefficient AeAf in the cos θ term, the left-right asymmetry, ALR, picks out the coefficient Ae

in the (1 + cos2 θ) term, and the left-right forward-backward asymmetry [37], ALRFB, picks out
the coefficient Af in the cos θ term.
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Figure 1.9: Higher-order corrections to the gauge boson propagators due to boson and fermion
loops.

These tree-level quantities are modified by radiative corrections to the propagators and vertices
such as those shown in Figures 1.9 and 1.10. When these corrections are renormalized in the
“on-shell” scheme [26], which we adopt here, the form of Equation 1.5 is maintained, and taken
to define the on-shell electroweak mixing angle, θW, to all orders, in terms of the vector boson
pole masses:

ρ0 =
m2

W

m2
Z cos2 θW

. (1.10)

In the following, ρ0 = 1 is assumed.
The bulk of the electroweak corrections [25] to the couplings at the Z-pole is absorbed into

complex form factors, Rf for the overall scale and Kf for the on-shell electroweak mixing angle,
resulting in complex effective couplings:

GVf =
√

Rf (T f
3 − 2QfKf sin2 θW) (1.11)

GAf =
√

Rf T f
3 . (1.12)

In terms of the real parts of the complex form factors,

ρf ≡ #(Rf) = 1 + ∆ρse + ∆ρf (1.13)

κf ≡ #(Kf) = 1 + ∆κse + ∆κf , (1.14)

the effective electroweak mixing angle and the real effective couplings are defined as:

sin2 θf
eff ≡ κf sin2 θW (1.15)

gVf ≡ √
ρf (T f

3 − 2Qf sin2 θf
eff) (1.16)

gAf ≡
√
ρf T f

3 , (1.17)
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These tree-level quantities are modified by radiative corrections to the propagators and vertices
such as those shown in Figures 1.9 and 1.10. When these corrections are renormalized in the
“on-shell” scheme [26], which we adopt here, the form of Equation 1.5 is maintained, and taken
to define the on-shell electroweak mixing angle, θW, to all orders, in terms of the vector boson
pole masses:

ρ0 =
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Z cos2 θW

. (1.10)

In the following, ρ0 = 1 is assumed.
The bulk of the electroweak corrections [25] to the couplings at the Z-pole is absorbed into

complex form factors, Rf for the overall scale and Kf for the on-shell electroweak mixing angle,
resulting in complex effective couplings:

GVf =
√

Rf (T f
3 − 2QfKf sin2 θW) (1.11)

GAf =
√

Rf T f
3 . (1.12)

In terms of the real parts of the complex form factors,

ρf ≡ #(Rf) = 1 + ∆ρse + ∆ρf (1.13)

κf ≡ #(Kf) = 1 + ∆κse + ∆κf , (1.14)

the effective electroweak mixing angle and the real effective couplings are defined as:

sin2 θf
eff ≡ κf sin2 θW (1.15)

gVf ≡ √
ρf (T f

3 − 2Qf sin2 θf
eff) (1.16)

gAf ≡
√
ρf T f

3 , (1.17)
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so that:

gVf

gAf
= "

(GVf

GAf

)

= 1 − 4|Qf | sin2 θf
eff . (1.18)

The quantities ∆ρse and ∆κse are universal corrections arising from the propagator self-
energies, while ∆ρf and ∆κf are flavour-specific vertex corrections. For simplicity we ignore
the small imaginary components of these corrections in most of the following discussion. The
leading order terms in ∆ρse and ∆κse for mH $ mW are [27]:

∆ρse =
3GFm2

W

8
√

2π2

[

m2
t

m2
W

−
sin2 θW
cos2 θW

(

ln
m2

H

m2
W

−
5

6

)

+ · · ·
]

(1.19)

∆κse =
3GFm2
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8
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2π2
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sin2 θW

−
10

9

(

ln
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W

−
5

6

)

+ · · ·
]

(1.20)

For mH & mW, the Higgs terms are modified, for example:

∆ρse =
3GFm2

W

8
√

2π2

[

m2
t

m2
W

+
2

3

m2
Z

m2
W

ln
m2

H

m2
Z

−
7π

3

mHmZ

m2
W

+ · · ·
]

(1.21)

where only internal Higgs loops are considered. Note the change of sign in the slope of the
Higgs correction for low mH seen in Equation 1.21 compared to Equation 1.19, which is due to
contributions from the derivative of the Z self-energy with respect to momentum transfer [28].
Existence of the process e+e− → Z∗H (Higgsstrahlung) would tend to reduce the mH dependence
in Equation 1.21 [29]. The radiative corrections have a quadratic dependence on the top quark
mass and a weaker logarithmic dependence on the Higgs boson mass. The flavour dependence
is very small for all fermions, except for the b-quark, where the effects of the diagrams shown in
Figure 1.10 are significant, due to the large mass splitting between the bottom and top quarks
and the size of the diagonal CKM matrix element |Vtb| ' 1 , resulting in a significant additional
contribution for bb production [28] (The effects of the off-diagonal CKM matrix elements are
here negligible.):

∆κb =
GFm2

t

4
√

2π2
+ · · · , (1.22)

∆ρb = −2∆κb + · · · . (1.23)

By interpreting the Z-pole measurements in terms of these corrections, the top quark mass
can be determined indirectly, and compared to the direct measurements. The Z-pole measure-
ments, even when taken alone, have sufficient power to separate the Higgs and top corrections
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For mH & mW, the Higgs terms are modified, for example:
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where only internal Higgs loops are considered. Note the change of sign in the slope of the
Higgs correction for low mH seen in Equation 1.21 compared to Equation 1.19, which is due to
contributions from the derivative of the Z self-energy with respect to momentum transfer [28].
Existence of the process e+e− → Z∗H (Higgsstrahlung) would tend to reduce the mH dependence
in Equation 1.21 [29]. The radiative corrections have a quadratic dependence on the top quark
mass and a weaker logarithmic dependence on the Higgs boson mass. The flavour dependence
is very small for all fermions, except for the b-quark, where the effects of the diagrams shown in
Figure 1.10 are significant, due to the large mass splitting between the bottom and top quarks
and the size of the diagonal CKM matrix element |Vtb| ' 1 , resulting in a significant additional
contribution for bb production [28] (The effects of the off-diagonal CKM matrix elements are
here negligible.):

∆κb =
GFm2
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2π2
+ · · · , (1.22)

∆ρb = −2∆κb + · · · . (1.23)

By interpreting the Z-pole measurements in terms of these corrections, the top quark mass
can be determined indirectly, and compared to the direct measurements. The Z-pole measure-
ments, even when taken alone, have sufficient power to separate the Higgs and top corrections
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where only internal Higgs loops are considered. Note the change of sign in the slope of the
Higgs correction for low mH seen in Equation 1.21 compared to Equation 1.19, which is due to
contributions from the derivative of the Z self-energy with respect to momentum transfer [28].
Existence of the process e+e− → Z∗H (Higgsstrahlung) would tend to reduce the mH dependence
in Equation 1.21 [29]. The radiative corrections have a quadratic dependence on the top quark
mass and a weaker logarithmic dependence on the Higgs boson mass. The flavour dependence
is very small for all fermions, except for the b-quark, where the effects of the diagrams shown in
Figure 1.10 are significant, due to the large mass splitting between the bottom and top quarks
and the size of the diagonal CKM matrix element |Vtb| ' 1 , resulting in a significant additional
contribution for bb production [28] (The effects of the off-diagonal CKM matrix elements are
here negligible.):
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∆ρb = −2∆κb + · · · . (1.23)

By interpreting the Z-pole measurements in terms of these corrections, the top quark mass
can be determined indirectly, and compared to the direct measurements. The Z-pole measure-
ments, even when taken alone, have sufficient power to separate the Higgs and top corrections
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✦ The combination of EWPOs and SM predictions at loop-level provides 
firmly test of the SM and further constraints on the unknown parameter, e.g., 
the Higgs boson mass 
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Figure 1.13: Measurements of the hadron production cross-section around the Z resonance.
The curves indicate the predicted cross-section for two, three and four neutrino species with
SM couplings and negligible mass.

Since the right- and left-handed couplings of the Z to fermions are unequal, Z bosons can
be expected to exhibit a net polarisation along the beam axis even when the colliding electrons
and positrons which produce them are unpolarised. Similarly, when such a polarised Z decays,
parity non-conservation implies not only that the resulting fermions will have net helicity, but
that their angular distribution will also be forward-backward asymmetric.

When measuring the properties of the Z boson, the energy-dependent interference between
the Z and the purely vector coupling of the photon must also be taken into account. This
interference leads to an additional asymmetry component which changes sign across the Z-
pole.

Considering the Z exchange diagrams and real couplings only,2 to simplify the discussion,
2As in the previous section, the effects of radiative corrections, and mass effects, including the imaginary

parts of couplings, are taken into account in the analysis. They, as well as the small differences between helicity
and chirality, are neglected here to allow a clearer view of the helicity structure. It is likewise assumed that the
magnitude of the beam polarisation is equal in the two helicity states.
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invisible decay width/neutrino 
species,

Abstract

We report on the final electroweak measurements performed with data taken at the Z
resonance by the experiments operating at the electron-positron colliders SLC and LEP. The
data consist of 17 million Z decays accumulated by the ALEPH, DELPHI, L3 and OPAL
experiments at LEP, and 600 thousand Z decays by the SLD experiment using a polarised
beam at SLC. The measurements include cross-sections, forward-backward asymmetries and
polarised asymmetries. The mass and width of the Z boson, mZ and ΓZ, and its couplings to
fermions, for example the ρ parameter and the effective electroweak mixing angle for leptons,
are precisely measured:

mZ = 91.1875 ± 0.0021 GeV

ΓZ = 2.4952 ± 0.0023 GeV

ρ! = 1.0050 ± 0.0010

sin2 θlept
eff = 0.23153 ± 0.00016 .

The number of light neutrino species is determined to be 2.9840 ± 0.0082, in agreement with
the three observed generations of fundamental fermions.

The results are compared to the predictions of the Standard Model. At the Z-pole, elec-
troweak radiative corrections beyond the running of the QED and QCD coupling constants are
observed with a significance of five standard deviations, and in agreement with the Standard
Model. Of the many Z-pole measurements, the forward-backward asymmetry in b-quark pro-
duction shows the largest difference with respect to its Standard Model expectation, at the
level of 2.8 standard deviations.

Through radiative corrections evaluated in the framework of the Standard Model, the Z-pole
data are also used to predict the mass of the top quark, mt = 173+13

−10 GeV, and the mass of the
W boson, mW = 80.363 ± 0.032 GeV. These indirect constraints are compared to the direct
measurements, providing a stringent test of the Standard Model. Using in addition the direct
measurements of mt and mW, the mass of the as yet unobserved Standard Model Higgs boson
is predicted with a relative uncertainty of about 50% and found to be less than 285 GeV at
95% confidence level.

Keywords: Electron-positron physics, electroweak interactions, decays of heavy intermediate
gauge bosons, fermion-antifermion production, precision measurements at the Z resonance,
tests of the Standard Model, radiative corrections, effective coupling constants, neutral weak
current, Z boson, W boson, top quark, Higgs boson.

PACS: 12.15.-y, 13.38.-b, 13.66.-a, 14.60.-z, 14.65.-q, 14.70.-e, 14.80.-j.
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Figure 8.13: ∆χ2(mH) = χ2
min(mH) − χ2

min as a function of mH. The line is the result of
the fit using all 18 results. The associated band represents the estimate of the theoretical
uncertainty due to missing higher-order corrections as discussed in Section 8.4. The vertical
band shows the 95% confidence level exclusion limit on mH of 114.4 GeV derived from the
direct search at LEP-II [39]. The dashed curve is the result obtained using the theory-driven
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had(m

2
Z) determination of Equation 8.4. The direct measurements of mW and ΓW used here

are preliminary.
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✦ Future e+e- machines will have dedicated run as Z factory with high 
statistics, a few orders higher than at LEP1, e.g., FCC-ee-Z, CEPC

Chapter A

Introduction and overview

Contribution� by: A. Blondel, J. Gluza, S. Jadach, P. Janot, T. Riemann
Corresponding author: J. Gluza [janusz.gluza@cern.ch]

This report includes a collection of studies devoted to a discussion of (i) the status of theoretical
e�orts towards the calculation of higher-order Standard Model (SM) corrections needed for the
FCC-ee precision measurement programme, (ii) the possibility of making discoveries in physics
by means of these precision measurements, and (iii) methods and tools that must be developed
to guarantee precision calculations of the observables to be measured. This report originates
from presentations at the 11th FCC-ee Workshop: Theory and Experiments, 8–11 January 2019,
CERN, Geneva [1], with 117 registered participants and 42 talks on theory.

1 The FCC-ee electroweak factory
In the 2018 report [2], we focused on theoretical issues of the FCC-ee Tera-Z, which will be a
e+e≠ collider working at the Z resonance energy region. However, the FCC-ee collider project
will work in several energy regions, making it a complete electroweak factory, covering the
direct production of all massive bosons of the SM and the top quark. This plan is summarised
in Table A.1.1.

Table A.1.1: Run plan for FCC-ee in its baseline configuration with two experiments. The WW
event numbers are given for the entirety of the FCC-ee running at and above the WW threshold.

Phase Run duration Centre-of-mass Integrated Event
(years) energies luminosity statistics

(GeV) (ab≠1)
FCC-ee-Z 4 88–95 150 3 ◊ 1012 visible Z decays
FCC-ee-W 2 158–162 12 108 WW events
FCC-ee-H 3 240 5 106 ZH events
FCC-ee-tt 5 345–365 1.7 106 tt̄ events

The exceptional precision of the FCC-ee comes from several features of the programme.

1. Extremely high statistics of 5 ◊ 1012 Z decays, 108 WW, 106 ZH, and 106 tt̄ events.
�This contribution should be cited as:

A. Blondel, J. Gluza, S. Jadach, P. Janot, T. Riemann, Introduction and overview, DOI: 10.23731/CYRM-2020-
003.3, in: Theory for the FCC-ee, Eds. A. Blondel, J. Gluza, S. Jadach, P. Janot and T. Riemann,
CERN Yellow Reports: Monographs, CERN-2020-003, DOI: 10.23731/CYRM-2020-003, p. 3.
© CERN, 2020. Published by CERN under the Creative Commons Attribution 4.0 license.
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✦ Unprecedented experimental precision (dominated by systematics) 
expected on measurements of EWPOs or its alternative forms 

A Introduction and overview

Table A.1.2: Measurement of selected electroweak precision observables (EWPOs) at the
FCC-ee, compared with the current precision. The systematic uncertainties are initial esti-
mates and might improve on further examination. This set of measurements, together with
those of the Higgs properties, achieves indirect sensitivity to new physics up to a scale � of
70 TeV in a description with dimension-6 operators, and possibly much higher in some specific
new physics models.

Observable Current FCC-ee FCC-ee Comment,
value ± Error stat. syst. dominant experimental error

m
Z

(keV) 91186700 ± 2200 4 100 From Z line shape scan,
beam energy calibration

�Z (keV) 2495200 ± 2300 7 100 From Z line shape scan,
beam energy calibration

RZ
¸

(◊103) 20767 ± 25 0.06 0.2–1 Ratio of hadrons to leptons,
acceptance for leptons

–s(mZ) (◊104) 1196 ± 30 0.1 0.4–1.6 From RZ
¸

Rb (◊106) 216290 ± 660 0.3 <60 Ratio of bb̄ to hadrons,
stat. extrapolated from SLD

‡0
had (◊103) (nb) 41541 ± 37 0.1 4 Peak hadronic cross-section,

luminosity measurement
Nn(◊103) 2991 ± 7 0.005 1 Z peak cross-sections,

luminosity measurement
sin2◊e�

W (◊106) 231480 ± 160 3 2–5 From Aµµ
FB from Aµµ

FB at Z peak,
beam energy calibration

1/–QED(mZ)(◊103) 128952 ± 14 4 Small From Aµµ
FB o� peak

Ab
FB, 0 (◊104) 992 ± 16 0.02 1-3 b quark asymmetry at Z pole,

from jet charge
Apol,·

FB (◊104) 1498 ± 49 0.15 <2 t polarisation and charge asymmetry,
t decay physics

mW (MeV) 80350 ± 15 0.5 0.3 From WW threshold scan,
beam energy calibration

�W (MeV) 2085 ± 42 1.2 0.3 From WW threshold scan,
beam energy calibration

–s(mW)(◊104) 1170 ± 420 3 Small From RW
¸

Nn(◊103) 2920 ± 50 0.8 Small Ratio of invisible to leptonic,
in radiative Z returns

mtop (MeV/c2) 172740 ± 500 17 Small From tt̄ threshold scan,
QCD errors dominate

�top (MeV/c2) 1410 ± 190 45 Small From tt̄ threshold scan,
QCD errors dominate

⁄top/⁄SM
top 1.2 ± 0.3 0.10 Small From tt̄ threshold scan,

QCD errors dominate
ttZ couplings ± 30% 0.5 – 1.5% Small From ECM = 365 GeV run

- 5 -

here no theoretical uncertainties included for Fcc-ee 
sys. projection
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✦ Unprecedented experimental precision (dominated by systematics) 
expected on measurements of EWPOs or its alternative forms 

C.3 QED deconvolution and pseudo-observables at FCC-ee precision

Fig. C.2: Possible scheme of construction of EWPPs in data analysis of the FCC-ee

QED remnants, without collinear mass logs) works at any order and for arbitrary precision.
The CEEX scheme is a complete scheme for QED infrared factorization or resummation and matching,

consistently, finite non-IR contribution with the resummed parts, also working for narrow resonances, such as
Z resonance. The role of the Monte Carlo method is merely to square the CEEX matrix element, sum up over
spins of photons and fermions, integrate over the soft and hard photon phase space and sum up over photon
multiplicities, numerically and without approximation. All this was implemented for the e

�
e
+ ! f f̄ process

in the KKMC event generator [34] but the CEEX technique is universal and can be used for any other process.
The IFI contributions due to real photons simply result from squaring and spin summing of the scattering
matrix element; hence, are automatically and fully taken into account (virtual contributions must be calculated
separately).

More precisely, spin amplitudes in KKMC include QED non-soft corrections to second-order and pure
EW correction up to first-order (with some second-order EW improvements, QCD, etc.) using the DIZET
library [35]. The CEEX calculation scheme of KKMC can be extended in a natural way to higher orders,
including EW corrections up to two and three loops. More details on the CEEX scheme will be given in
Section C.3.4.

3.3 Electroweak pseudo-observables at the FCC-ee
With all these introductory remarks in mind, let us present an alternative scheme of QED deconvolution, which
should work at the FCC-ee precision and is free of the indicated problems of the LEP EWPO scheme. This new
scheme is illustrated in Fig. C.2.

In the first step, (A)!(B), detector inefficiencies are removed. Kinematic boundaries of the detectors
can also be replaced by simpler phase space boundaries in terms of some kinematic cuts, without any loss in
precision, using MC event generators with sophisticated QED matrix element and full phase space coverage,
interfaced with detector simulation programs. Contrary to LEP procedure, we are not restricted here to the
limited choice of the semi-realistic cut-offs of the non-MC programs, which may be far away from the true
experimental cut-offs, owing to greater use of the Monte Carlo programs in the following steps.
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Executive summary
The main theoretical issues of the FCC-ee studies discussed in this report may be summarised
as follows.

1. To adjust the precision of theory predictions to the experimental demands from the
FCC-ee, an update of existing software and the development of new, independent software
will be needed. This should include, in the first instance, solutions to the following issues:

(a) factorisation to infinite order of multiphoton soft-virtual QED contributions;
(b) resummations in Monte Carlo generators;
(c) disentangling of QED and EW corrections beyond one loop, with soft-photon fac-

torisation or resummation;
(d) proper implementation of higher-loop e�ects, such as Laurent series around the Z

peak;
(e) further progress in methods and tools for multiloop calculations and Monte Carlo

generators.

Some discussions have been initiated in the 2018 report [1]; here, they are extended in
the Introduction and Chapters B and C.

2. To meet the experimental precision of the FCC-ee Tera-Z for electroweak precision observ-
ables (EWPOs), even three-loop EW calculations of the Zff̄ vertex will be needed, com-
prising the loop orders O(––2

s ), O(Nf–2–s), O(N2
f –3), and also the corresponding QCD

four-loop terms. This was mainly a subject of the 2018 report [1].

3. To decrease the –QED uncertainty by a factor of five to ten, to the level (3–5) ◊ 10≠5,
will require improvements in low-energy experiments. Alongside this, the perturbative
QCD (pQCD) prediction of the Adler function must be improved by a factor of two,
accomplished with better uncertainty estimates for mc and mb. The next mandatory
improvements required are:

(a) four-loop massive pQCD calculation of the Adler function;
(b) improved –s in the low Q2 region above the · mass;

(c) a better control and understanding of �–(5)
had(M2

Z), in terms of R data;
(d) di�erent methods for directly accessing –(M2

Z), e.g., the muon forward–backward
asymmetry, or for calculating –QED, either based on a radiative return experiment,
e.g., at the FCC-ee Tera-Z, or using lattice QCD methods.

This is discussed in Chapter B.

4. FCC-ee precision measurements require many improvements on the theoretical QCD side.
These include: (i) higher-order pQCD fixed-order calculations; (ii) higher-order logarith-
mic resummations; (iii) per-mille-precision extractions of the –s coupling; and (iv) an
accurate control of non-perturbative QCD e�ects (such as, e.g., colour reconnection,
hadronization), both analytically and as implemented in the Monte Carlo generators.
These issues are discussed in Chapter B.
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✦ QED corrections at fixed-order and with soft/collinear resummations 
are implemented in various Monte Carlo/semi-analytical generators; 
fully differential MC generator with high QED precision is non-trivial 
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Figure 2: QED perturbative leading and subleading corrections. Rows represent corrections

in consecutive perturbative orders – the first row is the Born contribution. The first column

represents the leading logarithmic (LO) approximation and the second column depicts the

next-to-leading (NLO) approximation. In the figure, terms selected for the same precision

level are limited with the help of an additional line.

2.2 More on soft and collinear resummation in QED calculations

The other important question is that of the importance of the soft and collinear photon
resummation. For totally inclusive observables in the final state (like FSR in the Z

boson decay) mass logarithms do cancel completely among real and virtual ones according
to the Kinoshita-Lee-Nauenberg theorem. For the cut-o↵ on the total photon energy
Emax ⌧ Ebeam, the O(↵n) YFS/Sudakov double logarithmic contributions

S
(n)

⇠

⇣
↵

⇡
2Lf ln

Emax

Ebeam

⌘n

for a strong cuto↵ may easily be huge, S(n)
� 1, and definitely require resummation.

Only for a loose cut-o↵ like Emax/Ebeam ⇠ 0.2 and very low precision requirements one
could avoid soft photon resummation.

There are several techniques of soft photon resummation of the di↵erent levels of
sophistication. In the most primitive version all photon energies are restricted to small
values, the integration over photon angles and energies is done analytically, keeping only
the sum of photon energies fixed. This we call inclusive soft photon exponentiation, IEX
in short. In the Yennie-Frautschi-Suura (YFS) work [17] it was outlined how to match
smoothly soft and hard photon distributions, covering the entire phase space, without
any need of the cut-o↵ on total photon energy. It was only in late 1980’s that it was
gradually worked out how to implement YFS soft photon factorisation and resummation
within the Monte Carlo event generators [18,19]. This technique we call exclusive photon

5

Z resonance a combination of MC programs and semianalytical non-MC calculations
will be used in the data analysis [4]1. This will be due to many reasons, the rise of
non-factorisable QED corrections above the level of the experimental precision, the need
of further development of the resummation techniques of soft and collinear corrections
which will be the only available within MC programs and the generally bigger role of the
multiparticle final states, for which the MC technique is the only method of integration
over the phase space. The future tools and techniques for practical calculations of the
QED e↵ects will gradually emerge in more detail in the following discussion of many
observables to be measured at FCC-ee.

The content of the paper is the following: we start with a brief overview of pertur-
bative QED techniques. In particular the soft and collinear factorisation is substantially
di↵erent from that of QCD. It will be stressed that optimal strategy of truncation of the
perturbative orders from the point of view of precision is not the simplistic order-by-order
truncation but a more subtle approach taking into account mass logarithms at higher
orders. Next we shall elaborate on the QED component of the systematic errors in the
measurements of the mass and partial width of Z, the total cross section and asymmetries
near the Z resonance and of the W mass measurement, according to the present state
of art inherited from LEP era, describing in detail the main source of QED uncertainties
in these experimental observables. Next, we shall compare present QED precision of the
observables with the planned experimental systematic and statistical precision at FCC-ee,
in order to estimate how much improvement is needed in the QED calculations. For each
experimental observable we shall examine how di�cult it will be to get su�cient improve-
ment in terms of more perturbative orders, improvement in the resummation techniques
and development of new software tools i.e. the entire new class of dedicated MC event
generators. In the above discussion we shall briefly elaborate upon the question how to
factorize in practice the resummed QED and the so called “pure electroweak” parts of
the perturbative calculation such that they coexists in the MC event generators forming
a complete perturbative expansion without any double counting nor under counting. A
short summary will complete the paper.

2 General features of QED corrections

Fig. 1 shows parameters which control e↵ectively the strength of the QED O(↵n) correc-
tions for e± beams (ISR) and for final state muon pair µ± (FSR) at the Z peak:

�nr =

✓
↵

⇡

◆n✓
2 ln

M
2
Z

m2
f

◆r

, 0  r  n, (2.1)

for f = e, µ correspondingly. The relative precision 6 · 10�3 requires the inclusion of
corrections of the QED correction up to

O(↵1
L
1
f ,↵

1
L
0
f ,↵

2
L
2
f ), Lf = ln(s/m2

f ),

1The most important role of semi-analytical calculations will be in testing/validating MC programs.
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the sum of photon energies fixed. This we call inclusive soft photon exponentiation, IEX
in short. In the Yennie-Frautschi-Suura (YFS) work [17] it was outlined how to match
smoothly soft and hard photon distributions, covering the entire phase space, without
any need of the cut-o↵ on total photon energy. It was only in late 1980’s that it was
gradually worked out how to implement YFS soft photon factorisation and resummation
within the Monte Carlo event generators [18,19]. This technique we call exclusive photon

5

exponentiation, EEX in short. In the EEX methodology soft photon factorisation and
resummation is done at the level of the multiphoton fully di↵erential distributions, that
is for spin amplitudes squared and spin summed/averaged.

Near the narrow resonances R another similar class of soft logarithms

S
(n)

⇠

⇣
↵

⇡
ln

�R

MR

⌘n

present in real and virtual corrections also requires resummation. In addition, due to the
complicated pattern of the QED interferences between the initial and final state photons
(cancellations due to short lifetime of the resonance) which operate at the amplitude
level, one is forced to perform soft photon factorisation at the amplitude level, before
squaring and spin summing. This technique was developed by the Frascati group [20].
Moreover, the need of proper implementation of spin e↵ects in the ⌧ pair production and
decays at LEP also was enforcing the use of spin amplitudes. In order to meet the above
requirements a new variant of YFS-inspired soft photon resummation was developed [21],
in which soft photon factorisation was reformulated at the amplitude level and soft photon
resummation is implemented numerically within the MC program. Narrow resonance
e↵ects were accommodated as in ref. [20, 22]. This technique we call coherent exclusive
exponentiation, CEEX in short. So far, the only implementation of CEEX technique is in
the KKMC event generator [11].

The important message to theorists specialising in QED+EW multiloop calculations
is the following: do not add soft real emissions to multiloop results in order to eliminate
infrared singularities á la Bloch-Nordsieck, if you want these results to be used in the MC
generators with IR resummation. Instead, you should subtract IR parts (YFS virtual
formfactor) from the amplitudes, before squaring and spin summing3. Why? Because
combining IR soft and real contributios and the di↵erential cross section level is already
done in the Monte Carlo.

The related important practical question is whether the use of collinear resummation
of the mass logarithms is mandatory in QED to infinite order, like in QCD? Obviously in
QED it is not mandatory and in practice it is usually enough to stop at some finite order,
typically truncating infinite LO series at O(↵3

L
3
f ). In the FCC-ee environment it may be

sometimes necessary to include O(↵4
L
4
f ).

In case of the photon emission from leptons, employing the entire machinery of the
collinear resummation technique up to LO+NLO or LO+NLO+NNLO level is not trivial
due to finite lepton masses, handling properly the factorisation scale parameter, sectori-
sation of the phase space etc. In practice, it is more convenient and/or economical to
perform soft photon resummation in first place and only then to include collinear resum-
mation truncated to a convenient order4. This technique was used successfully in the many

3One can do it for gauge invariant groups of diagrams but not for individual diagrams. Undoing
Bloch-Nordsieck at O(↵2) is usually unfeasible, rendering two-loop calculations useless for the MC.

4Due to the more complicated infrared limit and almost zero quark masses, resummation in QCD is
done in di↵erent order – collinear resummation and soft resummation are in principle done simultane-
ously, with soft limit approximated quite often to some convenient order within the leading-logarithmic
expansion.

6
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✦ Current state-of-art generators are not much different wrt. those used 
in LEP analysis 20 years ago; large gaps wrt. FCC-ee precision  

Observable Source Err.{QED} Stat[Syst] LEP main development
LEP LEP FCC-ee FCC-ee to be done

MZ [MeV] Z linesh. 2.1{0.3} 0.005[0.1] 3⇥3? light fermion pairs
�Z [MeV] Z linesh. 2.1{0.2} 0.008[0.1] 2⇥3? fermion pairs
R

Z
l ⇥ 103 �(MZ) 25{12} 0.06[1.0] 12⇥3?? better FSR

�
0
had [pb] �

0
had 37{25} 0.1[4.0] 6⇥3? better lumi MC

N⌫ ⇥ 103 �(MZ) 8{6} 0.005[1.0] 6⇥3?? CEEX in lumi MC
N⌫ ⇥ 103 Z� 150{60} 0.8[< 1] 60⇥3?? O(↵2) for Z�

sin2
✓
eff
W ⇥ 105 A

lept.
FB 53{28} 0.3[0.5] 55⇥3?? h.o. and EWPOs

sin2
✓
eff
W ⇥ 105 hP⌧ i,A

pol,⌧
FB 41{12} 0.6[< 0.6] 20⇥3?? better ⌧ decay MC

MW [MeV] mass rec. 33{6} 0.5[0.3] 12⇥3??? QED at threshold
AMZ±3.5GeV

FB,µ ⇥ 105 d�
d cos ✓ 2000{100} 1.0[0.3] 100⇥3??? improved IFI

Table 2: Comparing experimental and theoretical errors at LEP and FCC-ee as in Table 1.

3rd column shows LEP experimental error together with uncertainty induced by QED and

4th column shows anticipated FCC-ee experimental statistical [systematic] errors. Additional

factor ⇥3 in the 5-th column (4th in Table 1) reflects what is needed for QED e↵ects to

be subdominant. Rating from
?
to

???
marks whether the needed improvement is relatively

straightforward, di�cult or very di�cult to achieve.

6 Summary

The main results of our study are indicated in Table 2, where we have indicated for selected
observables, the same as in Table 1, the improvement factor needed in calculations of the
QED e↵ects in order to match the experimental precision anticipated in the FCC-ee
experiment. We have also indicated explicitly the additional factor 3 necessary for these
e↵ects to become subdominant and the most important development to be done. We have
also tried to rate how di�cult it will be to achieve these targets. It is needless to say
that many of the above estimates remain speculative and are not based on solid numerical
results. However, this is always the case with estimates of the uncalculated higher order
perturbative corrections, so they have to be always taken with a grain of salt. On the
other hand, this kind of analysis is indispensable in planning directions and priorities of
the future work.
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✦ Theoretical uncertainties on EWPOS can be divided as intrinsic errors 
due to missing EW radiative corrections and parametric uncertainties 
due to SM inputs 

Quantity FCC-ee Current intrinsic error Projected intrinsic error

MW [MeV] 0.5–1 ‡ 4 (α3,α2αs) 1
sin2 θ!eff [10−5] 0.6 4.5 (α3,α2αs) 1.5

ΓZ [MeV] 0.1 0.4 (α3,α2αs,αα2
s) 0.15

Rb [10−5] 6 11 (α3,α2αs) 5
Rl [10−3] 1 6 (α3,α2αs) 1.5
‡The pure experimental precision on MW is ∼ 0.5 MeV [1, 2], see Sec. 4.2.2 for more details.

Table 1: Estimated precision for the direct determination of several important electroweak
precision observables at FCC-ee [1,2,33] (column two, including systematic and observable-
specific) uncertainties; as well as current intrinsic theory errors for the prediction of these
quantities within the SM (column three). The main sources of theory errors are also in-
dicated. Column four shows the estimated projected intrinsic theory errors when leading
3-loop corrections become available. See text for more details.

Here θ is the scattering angle and Pe is the polarization of the incoming electron beam.4

The asymmetry parameters are commonly written as

Af =
1− 4|Qf | sin2 θfeff

1− 4|Qf | sin2 θfeff + 8(Qf sin
2 θfeff)

2
. (8)

Here Qf denotes the charge of the fermion, and sin2 θfeff is the effective weak (fermionic)
mixing angle. Another important precision observable is the W -boson mass. It is currently
measured most precisely from the lepton p⊥ distribution in pp → #ν at hadron colliders, and
it can be calculated within the SM from the Fermi constant, GF, of muon decay.

The expected precision for the experimental determination of some of these quantities
at FCC-ee is given in the second column of Tab. 1 [1, 2, 33]. The Z-boson quantities can be
determined from a run at

√
s = MZ with several ab−1, and smaller statistics runs at center-

of-mass energies above and below the Z peak for the purpose of MZ and ΓZ measurements.
The W mass can be determined from a run at several values of

√
s near the threshold 2MW

with a combined luminosity of O(ab−1). Note that the number for MW in the table includes
an estimate of the theory error as described in section 4.2.2, since the measurement of MW

requires a full SM prediction (not only QED) for the WW cross-section near threshold as
input.

4.2 Theory uncertainties for EWPO

4.2.1 Intrinsic uncertainties

The quantities listed in Tab. 1 can be predicted within the SM by using GF, α(MZ), αs(MZ),
MZ , MH and mt as inputs. The radiative corrections in these predictions are currently

4Formulas for electron and positron polarization can be found, e.g., in Ref. [8].
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Quantity FCC-ee future parametric unc. Main source

MW [MeV] 0.5− 1 1 (0.6) δ(∆α)
sin2 θ!eff [10−5] 0.6 2 (1) δ(∆α)

ΓZ [MeV] 0.1 0.1 (0.06) δαs

Rb [10−5] 6 < 1 δαs

R! [10−3] 1 1.3 (0.7) δαs

Table 2: Estimated experimental precision for the direct measurement of several important
electroweak precision observables at FCC-ee [1, 2, 33] (column two, including systematic
uncertainties). Third column: parametric uncertainty of several important EWPO due to
uncertainties of input parameters given in (1), with the main source indicated in the fourth
column.

As discussed above, as total uncertainty for the theoretical prediction of an observable
the (quadratic) sum of parametric uncertainties plus intrinsic uncertainty should be taken6,
as given in the fourth column of Tab. 1 and the second and third columns of Tab. 2. More
generally, for combined fits to several observables, the parametric uncertainties should be
taken into account separately by using the corresponding parameters in the fit.

The above numbers have all been obtained assuming the SM as calculational framework.
The SM constitutes the model in which highest theoretical precision for the predictions of
EWPO can be obtained. As soon as physics beyond the SM (BSM) will be discovered, an
evaluation of the EWPO in any preferred BSM model will be necessary. The corresponding
theory uncertainties, both intrinsic and parametric, can then be larger (see, e.g., [35, 49]
for the Minimal Supersymmetric SM). A dedicated theory effort (beyond the SM) would be
needed in this case.

4.3 Higgs precision observables

For the accurate study of the properties of the Higgs boson, precise predictions for the
various partial decay widths, the branching ratios (BRs) and the Higgs-boson production
cross sections along with their theoretical uncertainties are indispensable.

4.3.1 Higgs-boson production cross-sections

The very narrow width of the Higgs boson allows for a factorization of all cross-sections with
resonant Higgs bosons into production and decay parts to very high precision if the Higgs
boson can be fully reconstructed. In this case, finite-width effects and off-shell contributions
are of relative size ΓH/MH ∼ 0.00003 and thus not relevant; this is in contrast to physics
with Z or W resonances, where Γ/M ∼ 0.03. If the Higgs boson is not fully reconstructable

6It should be noted that the intrinsic theory error is not a Gaussian random variable, which plays a role
in the combination with other error sources.
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of the direct measurement of α(MZ).
For illustration, two scenarios for ∆α will be considered below, one with total anticipated

uncertainty of 5 × 10−5 (assuming a combination of the experimental and possible future
theory uncertainties of similar magnitude) and an optimistic one with total uncertainty of
3× 10−5 (corresponding to subdominant theory uncertainties). For the optimistic scenario,
we also consider a reduced uncertainty of αs, which may be achievable by combining several
observables [32].

Taking into account the experimental and theoretical uncertainties discussed above, one
arrives at the following estimates for the achievable precision (from direct determination) for
the most important SM parameters at the FCC-ee:

δmt = 50 MeV, δmb = 13 MeV, δMZ = 0.1 MeV, δαs = 0.0002 (0.0001),

δ(∆α) = 5× 10−5 (3× 10−5). (1)

For mt and αs, another factor two improvement could be envisioned with a more ambitious
theory advancement.

4 Electroweak precision observables

4.1 EWPO definitions

The most important electroweak precision observables (EWPO) are related to properties of
the Z and W bosons. Z-boson properties are determined from measurements of e+e− → f f̄
on the Z-pole. To isolate the physics of the Z-boson, the typical set of pseudo-observables is
defined in the terms of the de-convoluted cross-section σf (s), where the effect of initial- and
final-state photon radiation and from s-channel photon and double-boson (box) exchange
has been removed. The impact of these corrections will be discussed below. The customary
set of pseudo-observables are

σ0
had =

∑

q

σq(M
2
Z), (2)

ΓZ =
∑

f

Γ[Z → f f̄ ], (from a fit to σf (s) at various values of s) (3)

R! =
[
∑

q σq(M2
Z)
]

/σ!(M
2
Z), ($ = e, µ, τ) (4)

Rq = σq(M
2
Z)/

[
∑

q σq(M2
Z)
]

, (q = b, c) (5)

Af
FB =

σf (θ < π
2
)− σf(θ > π

2
)

σf (θ < π
2
) + σf (θ > π

2
)
≡ 3

4
AeAf , (6)

Af
LR =

σf (Pe < 0)− σf (Pe > 0)

σf (Pe < 0) + σf (Pe > 0)
≡ Ae|Pe|. (7)

6

intrinsic error

parametric error
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✦ Projection of intrinsic errors for FCC-ee EWPOs with different 
assumptions on theoretical inputs, i.e. available loop calculations 

B Theory status of Z boson physics

Table B.7: Comparison of experimental FCC-ee precision goals for selected EWPOs (EXP2, from
Table B.1) with various scenarios for theoretical error estimations. TH1-new, current theoretical error
based on extrapolations through geometric series; TH2, estimated theoretical error (using prefactor
scalings), assuming that electroweak three-loop corrections are known; TH3, a scenario where the
dominant four-loop corrections are also available. Since reliable quantitative estimates of TH3 are
not possible at this point, only conservative upper bounds of the theoretical error are given.

FCC-ee-Z EWPO error estimates
��Z (MeV) �R` (10

�4
) �Rb (10

�5
) � sin

2
✓
`

e↵ (10
�6
)

EXP2 [46] 0.1 10 2÷ 6 6

TH1-new 0.4 60 10 45
TH2 0.15 15 5 15
TH3 <0.07 <7 <3 <7

three-loop diagrams are technically not much more complicated than two-loop bosonic integrals (e.g., in the
case of self-energy insertions, the dimensionality of MB integrals increases by only one), an overall two-digit
precision for the final phenomenological results appears to be within reach. This estimate is based on current
knowledge and available methods and tools.

Two further remarks are in order. First, the previously estimated value of the bosonic two-loop correction
to �Z based on the geometric series (TH1) was at the level of 0.1 MeV, which is much smaller than its actual
calculated value [21, 75]. This is partly based on the fact that all final-state flavours sum up because they
contribute to �Z(↵2

bos) with the same sign, which was not foreseen in the previous estimate. Thus, care should
be taken in interpreting any theoretical error estimates. Nonetheless, owing to the lack of a better strategy, we
assume that the values TH1-new in Table B.5 are representative of the actual size of the currently unknown
three-loop corrections. Second, the achievement of at least two digits intrinsic net numerical precision for
the three-loop electroweak corrections will probably require the evaluation of single Feynman integrals with
much greater precision than in the two-loop case, since the larger number of diagrams leads to more numerical
cancellations, and each new diagram topology poses new challenges for the numerical convergence.

Thus, besides straightforward improvements in numerical calculations based on SD and MB methods,
work on new innovative numerical and analytical techniques (and combinations thereof) should continue and
may lead to accelerated progress. There are many other places for future improvements, e.g., optimizations
at the three- and four-loop levels of the minimal number of MB integral dimensions (see Section E.3.6 in this
report), integration-by-parts (IBP) reductions to master integrals, or reliable practical prescriptions for the �5
issue at three loops and beyond. The numerical methods will certainly be complemented by progress in ana-
lytical and semi-analytical approaches (both in methods and tools), to which Chapter E is devoted. Similarly,
other EWPOs can be discussed. Table B.7 collects all present and expected theoretical intrinsic error estimates
(see, e.g., Ref. [75]).

To summarize, FCC-ee-Z imposes very strong demands on future theoretical calculations of currently
unknown higher-order quantum EW and QCD corrections. As shown here, different estimates lead to pre-
dictions for EWPO error bands that are at the level of or of the order of future experimental demands. Then
actual calculations may shift the values and diminish the errors of EWPOs substantially, as has been shown
recently in the case of the Z boson decay width [21]. Here, the result for the bosonic two-loop corrections
was found to be greater than the previous estimate by a factor of 3–5, depending on the chosen input paramet-
rization. One of the most promising avenues for addressing the challenges of these future calculations is the
use of numerical integration methods. These are more flexible than analytical techniques, but are limited by the
achievable numerical precision. Our estimates bring us to the conclusion that an accuracy of at least two digits
in future three- and four-loop calculations of EWPOs is needed. Therefore, dedicated and increased efforts by
the theory community will be important to meet the experimental demands of the FCC-ee-Z or other lepton
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Table B.3: Comparison of different kinds of radiative correction to �b [20], using the input par-
ameters in Table B.2. Here, ↵t = y

2
t /(4⇡), where yt is the top Yukawa coupling.

Order Value (10�4)
↵ 468.945
↵↵s �42.655

↵t↵
2
s �7.074

↵t↵
3
s �1.196

↵
2
t↵s 1.362

↵
3
t 0.123

↵
2
ferm 3.866

↵
2
bos �0.986

Table B.4: Loop contributions to the partial and total Z widths with fixed MW as input parameter.
Here Nf and N

2
f refer to corrections with one and two closed fermion loops, respectively, whereas

↵
2
bos denotes contributions without closed fermion loops. Furthermore, ↵t = y

2
t /(4⇡), where yt is the

top Yukawa coupling. Table taken from Ref. [21] (Creative Commons Attribution Licence, CC BY).

�i (MeV) �e �⌫ �d �u �b �Z

O(↵) 2.273 6.174 9.717 5.799 3.857 60.22
O(↵↵s) 0.288 0.458 1.276 1.156 2.006 9.11
O(↵t↵

2
s , ↵t↵

3
s , ↵

2
t↵s, ↵

3
t ) 0.038 0.059 0.191 0.170 0.190 1.20

O(N
2
f ↵

2
) 0.244 0.416 0.698 0.528 0.694 5.13

O(Nf↵
2
) 0.120 0.185 0.493 0.494 0.144 3.04

O(↵
2
bos) 0.017 0.019 0.059 0.058 0.167 0.51

For the total width �Z, the corrections are also significantly larger than the projected future experimental
error (EXP2) given in Table B.1.

These numerical examples demonstrate that radiative electroweak corrections beyond the two-loop level
must be calculated for future high-luminosity e

+
e
� experiments. In Table B.4, corrections are calculated using

MW as an input. By calculating MW obtained from Gµ, we get a value of 0.34 MeV for O(↵2
bos) instead of

0.51 MeV [21].
Let us discuss the impact of radiative corrections in more detail by estimating their potential values.
On the one hand, a source of uncertainty for the Standard Model prediction for any EWPO is the depend-

ence on input parameters, as listed in Table B.2. The impact of input parameters is best evaluated through a
global fit, as shown, e.g., in Refs. [31, 48]. On the other hand, a separate source of uncertainty is the missing
knowledge of theoretical higher-order corrections.

To estimate the latter, one can take different approaches, each of which has its own advantages and
disadvantages [75].

1. Determination of relevant prefactors of a class of higher-order corrections, such as couplings, group
factors, particle multiplicities, mass ratios, etc., and assuming the remainder of the loop amplitude to be
order O(1).
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Table B.5: Intrinsic theoretical error estimates (TH1) for �Z [45, 75], updates taking into account the
newly completed O(↵

2
bos)) corrections (TH1-new) [21] and a projection into the future, assuming �2,3

and the fermionic parts of �1 to be known (TH2).

�1 �2 �3 �4 �5 ��Z (MeV)

O(↵
3
) O(↵

2
↵s) O(↵↵

2
s ) O(↵↵

3
s ) O(↵

2
bos) =

qP5
i=1 �

2
i

TH1 (estimated error limits from geometric series of perturbation)
0.26 0.3 0.23 0.035 0.1 0.5

TH1-new (estimated error limits from geometric series of perturbation)
0.2 0.21 0.23 0.035 < 10

�4 0.4

�
0

1 �
0

2 �
0

3 �4 ��Z (MeV)
O(N

1
f ↵

3
) O(↵

3
↵s) O(↵

2
↵
2
s ) O(↵↵

3
s ) =

p
�021 + �022 + �032 + �24

TH2 (extrapolation through prefactor scaling)
0.04 0.1 0.1 0.035 10

�4 0.15

2. Extrapolation under the assumption that higher-order radiative corrections can be approximated by a
geometric series.

3. Testing the scale-dependence of a given fixed-order result obtained using the MS renormalization scheme,
in order to estimate the size of the missing higher orders; this is used more often in QCD.

4. Comparing results obtained using the on-shell and MS schemes, where the differences are of the next
order in the perturbative expansion.

In Table B.5, the intrinsic errors are shown for the Z boson decay width. Numerical estimates that are mainly
based on the geometric series extrapolation, but corroborated by some of the other methods, are denoted TH1.
In Ref. [21] the ↵2

bos contribution is given as +0.505 MeV with a net numerical precision of about four digits,
which eliminates the uncertainty associated with that term completely. It also shifts some of the geometric
series extrapolations, such as

O(↵3
)�O(↵3

t ) ⇠ O(↵2
)�O(↵2

t )

O(↵)
O(↵2

) ⇠ 0.2 MeV, (B.10)

where the full O(↵2
) term was previously not available. The new error estimate, TH1-new, is ±0.4 MeV.

As we can see, the estimated theoretical error is still much larger than that needed for the projected EXP2
goals in Table B.1, which is for the Z boson decay width . ±0.1 MeV. The dominant remaining uncertainty
stems from unknown three-loop contributions with either QCD loops, O(↵↵2

s ) and O(↵2↵s), or electroweak
fermionic loops, O(N2

f ↵
3
), where N2

f refers to diagrams with at least two closed fermion loops.
Once these corrections become available, with a robust intrinsic numerical precision of at least two digits,

the remaining theoretical error will become dominated by missing four-loop terms. Estimating these future
errors is rather unreliable at this time using geometric series of perturbation, since two orders of extrapolation
are required. Nevertheless, a rough guess can be obtained by using the following experience-based scaling
relations: each order of Nf↵ and ↵bos generate corrections of about 0.1 and 0.01, respectively, and n orders of
↵s produce a correction of roughly n!⇥ (0.1)n, where the n! factor accounts for the combinatorics of the SU(3)
algebra. In this fashion, one arrives at the TH2 scenario in Table B.5.2

2Accounting for ‘everything else’ besides the specific orders listed in Table B.5, one may assign a more conservative
future theoretical error estimate of ��Z ⇠ 0.2 MeV; see also Ref. [75].
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3
) O(↵

2
↵s) O(↵↵

2
s ) O(↵↵

3
s ) O(↵

2
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2
i
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�
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1 �
0

2 �
0

3 �4 ��Z (MeV)
O(N

1
f ↵

3
) O(↵

3
↵s) O(↵

2
↵
2
s ) O(↵↵

3
s ) =

p
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�4 0.15
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errors is rather unreliable at this time using geometric series of perturbation, since two orders of extrapolation
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method of geometric series

Observable X0 c1 c2 c3 c4 c5 c6 c7 max. dev.

Γe,µ [MeV] 83.966 −0.047 0.807 −0.095 −0.01 0.25 −1.1 285 < 0.001

Γτ [MeV] 83.776 −0.047 0.806 −0.095 −0.01 0.25 −1.1 285 < 0.001

Γν [MeV] 167.157 −0.055 1.26 −0.19 −0.02 0.36 −0.1 503 < 0.001

Γu [MeV] 299.936 −0.34 4.07 14.27 1.6 1.8 −11.1 1253 < 0.001

Γc [MeV] 299.860 −0.34 4.07 14.27 1.6 1.8 −11.1 1253 < 0.001

Γd,s [MeV] 382.770 −0.34 3.83 10.20 −2.4 0.67 −10.1 1469 < 0.001

Γb [MeV] 375.724 −0.30 −2.28 10.53 −2.4 1.2 −10.0 1458 < 0.001

ΓZ [MeV] 2494.24 −2.0 19.7 58.60 −4.0 8.0 −55.9 9267 < 0.01

R# [10−3] 20750.9 −8.1 −39 732.1 −44 5.5 −358 11702 < 0.1

Rc [10−3] 172.23 −0.029 1.0 2.3 1.3 0.38 −1.2 37 < 0.01

Rb [10−3] 215.80 0.031 −2.98 −1.32 −0.84 0.035 0.73 −18 < 0.01

σ0
had [pb] 41488.4 3.0 60.9 −579.4 38 7.3 85 −86027 < 0.1

Table 5: Coefficients for the parametrization formula (28) for various observables (X).
Within the ranges MH = 125.7 ± 2.5 GeV, mt = 173.2 ± 2.0 GeV, αs = 0.1184 ± 0.0050,
∆α = 0.0590± 0.0005 and MZ = 91.1876± 0.0042 GeV, the formula approximates the full
result with maximal deviations given in the last column.

The coefficients for the different observables discussed in the previous subsections are
given in Tab. 5. With these parameters, the formula provides a very good approximation
to the full result within the ranges MH = 125.7 ± 2.5 GeV, mt = 173.2 ± 2.0 GeV, αs =
0.1184 ± 0.0050, ∆α = 0.0590 ± 0.0005 and MZ = 91.1876 ± 0.0042 GeV, with maximal
deviations as quoted in the last column of Tab. 5.

Extended fit formulae, which cover a larger parameter region (in particular larger ranges
for MH and mt), are given in appendix B.

5 Error estimate

The results presented in this paper have an intrinsic theoretical uncertainty from currently
unknown higher-order contributions. The most important missing pieces are the bosonic
EW O(α2

bos) corrections (stemming from two-loop diagrams without closed fermion loops),
and O(α3), O(α2αs), O(αα2

s ) and O(αα3
s) corrections beyond the leading mn

t terms from
Ref. [9–11].

The second category can be estimated by assuming that the perturbation series follows
roughly a geometric series. Thus one obtains

O(α3)−O(α3
t ) ∼

O(α2
ferm)−O(α2

t )

O(α)
O(α2

ferm), (29)
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Γe,µ τ 0.012 MeV Γu,c 0.12 MeV R" 5× 10−3

Γν 0.014 MeV Γb 0.21 MeV Rc 5× 10−5

Γd,s 0.09 MeV ΓZ 0.5 MeV Rb 1.5× 10−4

Table 6: Remaining theory uncertainty for the partial and total Z widths and branching
ratios, using the estimation procedure described in the text.

O(α2αs)−O(α2
tαs) ∼

O(α2
ferm)−O(α2

t )

O(α)
O(ααs), (30)

O(αα2
s )−O(αtα

2
s ) ∼

O(ααs)−O(αtαs)

O(α)
O(ααs), (31)

O(αα3
s )−O(αtα

3
s ) ∼

O(ααs)−O(αtαs)

O(α)
O(αα2

s ), (32)

where the known leading large-mt approximations have been subtracted in the numerators,
and α2

ferm indicates the fermionic EW two-loop contribution discussed in this paper, which
is currently the only known O(α2) piece. Using these expressions, one finds for the total Z
width

ΓZ : O(α3)−O(α3
t ) ∼ 0.26 MeV, O(α2αs)−O(α2

tαs) ∼ 0.30 MeV,

O(αα2
s)−O(αtα

2
s ) ∼ 0.23 MeV, O(αα3

s )−O(αtα
3
s ) ∼ 0.035 MeV.

(33)

The error from the missing bosonic O(α2
bos) contributions can be evaluated by taking the

square of the bosonic one-loop corrections. For ΓZ this leads to the estimate O(α2
bos) ∼

0.1 MeV.
Besides the EW and mixed EW/QCD vertex corrections, one also has to consider the

impact of the unknown O(α5
s ) final-state QCD contribution. Using again the assumption

that the perturbative series approximately follows a geometric series, one obtains for the
total width

ΓZ : O(α5
s ) ∼

O(α4
s )

O(α3
s )
O(α4

s ) ≈ 0.04 MeV. (34)

Other higher-order final-state QED and QCD effects, e. g. of order O(αα2
s ) or O(α2αs) are

expected to be even smaller by the same assessment method.
Combining eqs. (33) and (34) and the O(α2

bos) estimate in quadrature, the total theory
error adds up to δΓZ ≈ 0.5 MeV.

Applying the same procedure to the partial widths, one obtains the theory errors listed
in Table 6. For the ratios (R", Rc and Rb), the theory uncertainty has been simply estimated
from the partial widths using Gaussian error propagation.

For the hadronic peak cross-section, the theory error can be evaluated from σ0
had ∝

(ΓeΓhad/Γ2
Z) (1 + δX). In the first term, the impact of perturbative higher-order corrections
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✦ Ingredients for 3-loop calculations of Z decay; challenges due to both 
large number of diagram/integrals, multi-mass scales, as well as high 
numerical precision required I. Dubovyk, A.M. Freitas, J. Gluza, K. Grzanka, S. Jadach, T. Riemann, J. Usovitsch

Table B.6: Number of topologies and diagrams for Z ! f f̄ decays in the Feynman gauge. Statistics for
planarity, QCD, and EW-type diagrams are also given. Label ‘A’ denotes statistics after elimination of
tadpoles and wavefunction corrections, and label ‘B’ denotes statistics after elimination of topological
symmetries of diagrams.

Z ! bb̄ 1 loop 2 loops 3 loops

Number of topologies 1 14
(A)! 7

(B)! 5 211
(A)! 84

(B)! 51

Number of diagrams 15 2383
(A,B)! 1074 490 387

(A,B)! 120 472

Fermionic loops 0 150 17 580

Bosonic loops 15 924 102 892

Planar / non-planar 15 / 0 981/133 84 059/36 413

QCD / EW 1 / 14 98 / 1016 10 386/110 086

Z ! e
+
e
�
, . . .

Number of topologies 1 14
(A)! 7

(B)! 5 211
(A)! 84

(B)! 51

Number of diagrams 14 2012
(A,B)! 880 397 690

(A,B)! 91 472

Fermionic loops 0 114 13104

Bosonic loops 14 766 78 368

Planar / non-planar 14 / 0 782/98 65 487/25 985

QCD / EW 0 / 14 0 / 880 144/91 328

For a safe interpretation of FCC-ee-Z measurements, the theoretical error must be subdominant relative
to the experimental uncertainties. Comparing the TH2 scenario with the EXP2 numbers, one can see that it does
not yet fit this bill. This implies that calculation of four-loop corrections, or at least the leading parts thereof,
will be necessary to fully match the planned precision of the FCC-ee experiments. Since estimates of future
theoretical errors are highly uncertain, and four-loop contributions are two orders beyond the current state of
the art, we do not attempt to make a quantitative estimate of the achievable precision, but it seems plausible that
the remaining uncertainty will be well below the EXP2 targets.

Let us now come back to the prospects for computing the missing three-loop contributions. Two basic
factors play a role: the number of Feynman diagrams (or, correspondingly, the number of Feynman integrals)
and the precision with which single Feynman integrals can be calculated. Some basic bookkeeping concerning
the number of diagram topologies and different types of diagrams is given in Table B.6. First, let us compare
the known number of diagram topologies and individual diagrams at two and three loops. Comparing the
genuine three-loop fermionic diagrams, which are simpler than the bosonic ones, with the already known two-
loop bosonic diagrams, there is about an order of magnitude difference in their number: 17 580 diagrams
for Z ! bb (and 13 104 diagrams for Z ! e

+
e
�) at O(↵3

ferm) versus 964 (and 766) diagrams at O(↵2
bos).

In general, however, the number of diagrams is, of course, not equivalent to the number of integrals to be
calculated. At O(↵3

ferm), we expect O(10
3
)�O(10

4
) distinct three-loop Feynman integrals before a reduction

to a basis, because different classes of diagrams often share parts of their integral bases.
Second, the accuracy with which three-loop diagrams can be calculated must be estimated. For two-

loop bosonic vertex integrals, results have been obtained with a high level of accuracy; eight digits in most
cases and at least six digits for the few worst integrals, with some room for improvement. The final accuracy
of the complete results for the bosonic two-loop corrections to the EWPOs was at the level of at least four
digits [20, 21]. To achieve this goal, the Feynman integrals have been calculated numerically, directly in the
Minkowskian region, using two main approaches: (i) SD, as implemented in the packages FIESTA3 [76] and
SecDec3 [77], and (ii) MB integrals, as implemented in the package MBsuite [78–83]. Because fermionic
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B Theory status of Z boson physics

Table B.7: Comparison of experimental FCC-ee precision goals for selected EWPOs (EXP2, from
Table B.1) with various scenarios for theoretical error estimations. TH1-new, current theoretical error
based on extrapolations through geometric series; TH2, estimated theoretical error (using prefactor
scalings), assuming that electroweak three-loop corrections are known; TH3, a scenario where the
dominant four-loop corrections are also available. Since reliable quantitative estimates of TH3 are
not possible at this point, only conservative upper bounds of the theoretical error are given.

FCC-ee-Z EWPO error estimates
��Z (MeV) �R` (10

�4
) �Rb (10

�5
) � sin

2
✓
`

e↵ (10
�6
)

EXP2 [46] 0.1 10 2÷ 6 6

TH1-new 0.4 60 10 45
TH2 0.15 15 5 15
TH3 <0.07 <7 <3 <7

three-loop diagrams are technically not much more complicated than two-loop bosonic integrals (e.g., in the
case of self-energy insertions, the dimensionality of MB integrals increases by only one), an overall two-digit
precision for the final phenomenological results appears to be within reach. This estimate is based on current
knowledge and available methods and tools.

Two further remarks are in order. First, the previously estimated value of the bosonic two-loop correction
to �Z based on the geometric series (TH1) was at the level of 0.1 MeV, which is much smaller than its actual
calculated value [21, 75]. This is partly based on the fact that all final-state flavours sum up because they
contribute to �Z(↵2

bos) with the same sign, which was not foreseen in the previous estimate. Thus, care should
be taken in interpreting any theoretical error estimates. Nonetheless, owing to the lack of a better strategy, we
assume that the values TH1-new in Table B.5 are representative of the actual size of the currently unknown
three-loop corrections. Second, the achievement of at least two digits intrinsic net numerical precision for
the three-loop electroweak corrections will probably require the evaluation of single Feynman integrals with
much greater precision than in the two-loop case, since the larger number of diagrams leads to more numerical
cancellations, and each new diagram topology poses new challenges for the numerical convergence.

Thus, besides straightforward improvements in numerical calculations based on SD and MB methods,
work on new innovative numerical and analytical techniques (and combinations thereof) should continue and
may lead to accelerated progress. There are many other places for future improvements, e.g., optimizations
at the three- and four-loop levels of the minimal number of MB integral dimensions (see Section E.3.6 in this
report), integration-by-parts (IBP) reductions to master integrals, or reliable practical prescriptions for the �5
issue at three loops and beyond. The numerical methods will certainly be complemented by progress in ana-
lytical and semi-analytical approaches (both in methods and tools), to which Chapter E is devoted. Similarly,
other EWPOs can be discussed. Table B.7 collects all present and expected theoretical intrinsic error estimates
(see, e.g., Ref. [75]).

To summarize, FCC-ee-Z imposes very strong demands on future theoretical calculations of currently
unknown higher-order quantum EW and QCD corrections. As shown here, different estimates lead to pre-
dictions for EWPO error bands that are at the level of or of the order of future experimental demands. Then
actual calculations may shift the values and diminish the errors of EWPOs substantially, as has been shown
recently in the case of the Z boson decay width [21]. Here, the result for the bosonic two-loop corrections
was found to be greater than the previous estimate by a factor of 3–5, depending on the chosen input paramet-
rization. One of the most promising avenues for addressing the challenges of these future calculations is the
use of numerical integration methods. These are more flexible than analytical techniques, but are limited by the
achievable numerical precision. Our estimates bring us to the conclusion that an accuracy of at least two digits
in future three- and four-loop calculations of EWPOs is needed. Therefore, dedicated and increased efforts by
the theory community will be important to meet the experimental demands of the FCC-ee-Z or other lepton

15


