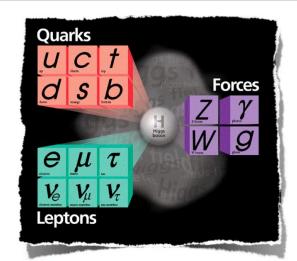
Predictions of m_{ee} and neutrino mass from a consistent Froggatt-Nielsen model

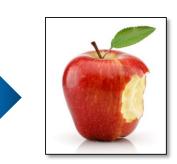
Jin-Wei Wang

Physics Department, UESTC

YC Qiu, JW Wang, T. Yanagida; PRD (2023)

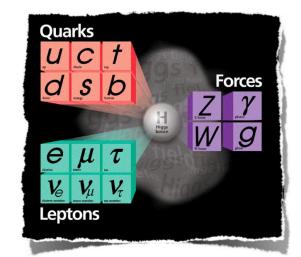
Nanjing, May 31th, 2024

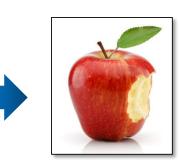



Outline

- Introduction and motivation
- Froggatt-Nielsen model
- Methodology and parameter choosing
- Predictions on m_{ee} and neutrino mass
- Summary

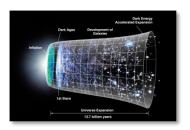
Successful!



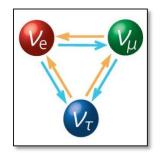


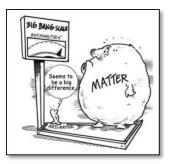
Not Perfect!

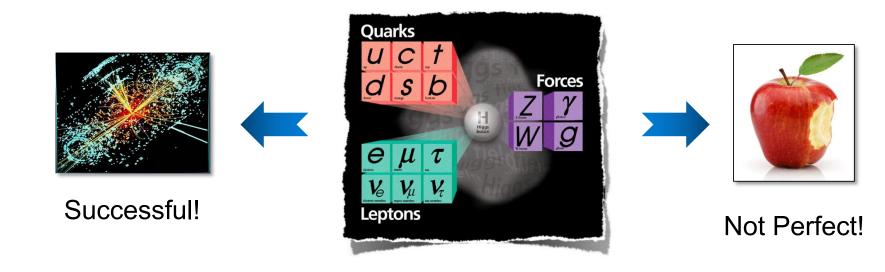
Successful!



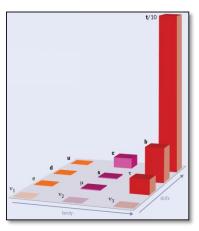
Not Perfect!

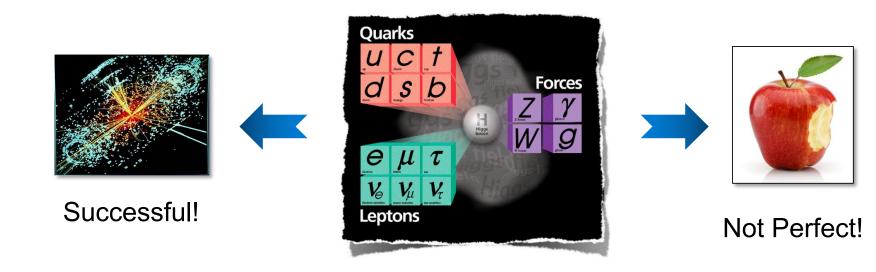

So many unsolved problems:


Dark Matter


Dark Energy

Neutrino Mass

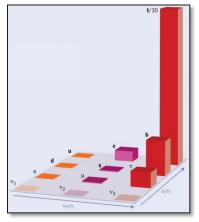

Bayron Genesis


Who order that?

(1) Why do these parameters choose such values?

(2) What is the origin of such a mass and mixing pattern?

Flavor Puzzle

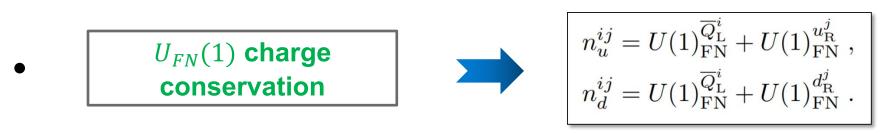

Who order that?

(1) Why do these parameters choose such values?

(2) What is the origin of such a mass and mixing pattern?

Froggatt-Nielsen model

Flavor Puzzle


Froggatt-Nielsen model

- Extend the SM with **golbal** U(1) symmetry, called $U_{FN}(1)$, which is broken by the vacuum expectation value (VEV) scalar field ϕ (FN field) with $U_{FN}(1)$ charge is -1;
- SM particles also carry $U_{FN}(1)$ charge, which is generation dependent, the Higgs carry FN charge 0.
- Quark sector: $-\mathcal{L} \supset y_u^{ij} \overline{Q}_{\mathrm{L}}^i \tilde{H} u_{\mathrm{R}}^j + y_d^{ij} \overline{Q}_{\mathrm{L}}^i H d_{\mathrm{R}}^j + \mathrm{h.c.}$

 $y_u^{ij} = g_{ij} \lambda^{n_u^{ij}}$, $y_d^{ij} = g_{ij} \mathcal{N} \lambda^{n_d^{ij}}$ with $\lambda = \langle \phi \rangle / M_{\rm PL}$

 g_{ij} is the universal couplings, $|g_{ij}|$ fulfill the normal distribution $N(\mu, \sigma^2)$ with $\mu = 1$, and $\sigma = 0.3$, the phase of g_{ij} is from 0~2pi

Froggatt-Nielsen model

- Mass hierarchy is indicated by the fermion mass ratio between generations, e.g. m_u/m_t , m_d/m_b
- Taking \overline{Q}_L^i and d_R^j for exaple $U(1)_{\text{FN}}^{\overline{Q}_L^i} = \{a, b, c\}$ and $U(1)_{\text{FN}}^{d_{\text{R}}^j} = \{d, e, f\}$

$$\lambda^{n_d^{ij}} = \lambda^{c+f} \begin{pmatrix} \lambda^{a-c+d-f} & \lambda^{a-c+e-f} & \lambda^{a-c} \\ \lambda^{b-c+d-f} & \lambda^{b-c+e-f} & \lambda^{b-c} \\ \lambda^{d-f} & \lambda^{e-f} & 1 \end{pmatrix}$$

TABLE I. Experimental measured quantities. Quark and
lepton mass ratios are taken at the scale of 10^{12}GeV [29],
which are almost energy scale independent [30]. Mixing angles
and CP phases are in the rad unit $[31]$.

m_u/m_t 6.58×10^{-6}	$rac{m_c/m_t}{0.00333}$	m_d/m_b 0.00104	${m_s/m_b} \ 0.0201$
$\begin{array}{c} \theta_{12}^{\rm C} \\ 0.227 \end{array}$	$ heta_{23}^{ m C} \ 0.0418$	$ heta_{13}^{ m C} \ 0.00369$	$\delta^{ m C}$ 1.14
$m_e/m_{ au} \ 0.000279$	$rac{m_{\mu}/m_{ au}}{0.0589}$	$\Delta m^2_{21}/\Delta m^2_{32} \ 0.0307$	
$ heta_{12}^{ m P} \ 0.591$	$\begin{array}{c} \theta_{23}^{\mathrm{P}} \\ 0.844 \end{array}$	$ heta_{13}^{ m P} \ 0.150$	$ \delta^{\rm P} \\ -2.41^{+0.663}_{-0.489} $

• SM values:

- Quark and letpton mass ratio are almost same from 10^{12} GeV to M_{PL}
- Only FN field is introduced, the mixing angle running can be ingored.

• Wolfenstein parametrization

 $\sin \theta_{12}^{\rm C} \sim \lambda', \ \sin \theta_{23}^{\rm C} \sim \lambda'^2 \ \text{and} \ \sin \theta_{13}^{\rm C} \sim \lambda'^3, \ \text{where} \ \lambda' \sim 0.2.$

$$\lambda \sim \mathcal{O}(\lambda') \text{ and } U(1)_{\text{FN}}^{\overline{Q}_{\text{L}}^{i}} = \{3, 2, 0\}$$

• Assuming the FN charges of u_R and d_R are {a, b, 0} and {c, d, 0}

• Lepton sector: $-\mathcal{L} \supset y_{\ell}^{ij} \overline{\ell}_{\mathrm{L}}^{i} H e_{\mathrm{R}}^{j} + \frac{1}{M} y_{\nu}^{ij} \left(\overline{\ell}_{\mathrm{L}}^{\mathrm{c}}{}^{i} \widetilde{H}^{*} \right) \left(\widetilde{H}^{\dagger} \ell_{\mathrm{L}}^{j} \right) + \mathrm{h.c.}$

$$y_{\ell}^{ij} = g_{ij} \mathcal{N} \lambda^{n_{\ell}^{ij}} , \quad y_{\nu}^{ij} = g_{ij}' \lambda^{n_{\nu}^{ij}}$$

• Large mixing angles $U(1)_{\text{FN}}^{\overline{\ell}_{\text{L}}} = \{1, 0.5, 0\}$ $U(1)_{\text{FN}}^{e_{\text{R}}} = \{e, f, 0\}$

• For neutrino $n_{\nu} = \begin{pmatrix} 2 & 1.5 & 1 \\ 1.5 & 1 & 0.5 \\ 1 & 0.5 & 0 \end{pmatrix}$

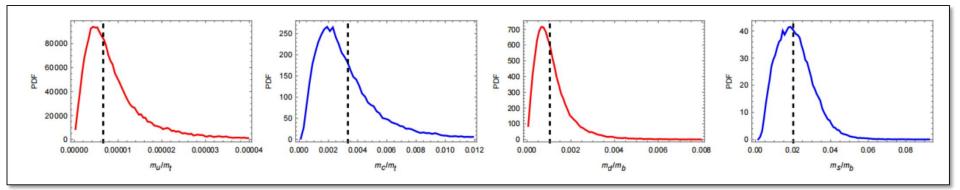
• The rank of n_v is 1, which indicates that the FN mechanism naturally prefers normal order (NO).

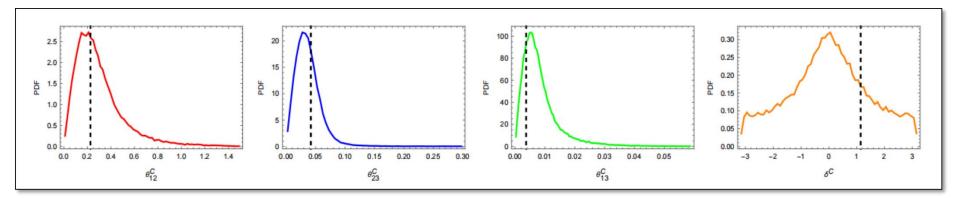
• By sampling 10^6 times using our FN charge with $\lambda = 0.171$ and $\sigma = 0.3$, we find that NO takes up about 98%.

FN charge assignment

TABLE II. H	N charge of qu	uarks and leptons.	
Generation i	1	2	3
$\overline{Q}_{ m L}$	3	2	0
$u_{ m R}$	4	1.5	0
$d_{ m R}$	1	0	0
$\overline{\ell}_{\mathbf{L}}$	1	0.5	0
$e_{ m R}$	4	1	0

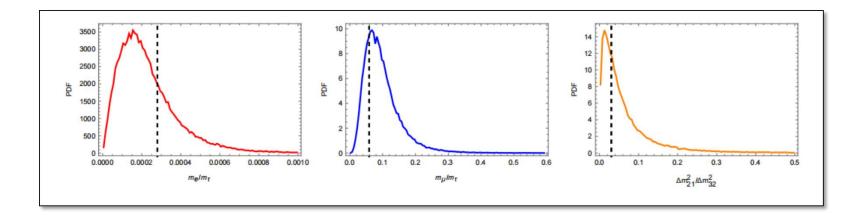
• FN charge:

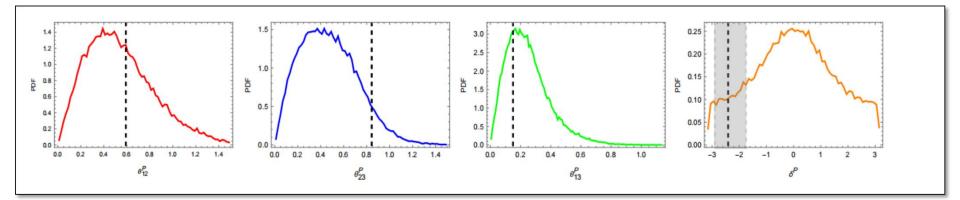

• Minimum chi-square methoed to fix the value of λ


$$\chi^{2}(\lambda) = \sum_{i} \left(\frac{E(X_{i}) - X_{i}^{\exp}}{\sqrt{V(X_{i})}} \right)^{2} \qquad X_{i} \in \left\{ \frac{m_{u}}{m_{t}}, \frac{m_{c}}{m_{t}}, \frac{m_{d}}{m_{b}}, \frac{m_{s}}{m_{b}}, \frac{m_{e}}{m_{\tau}}, \frac{m_{\mu}}{m_{\tau}}, \frac{\Delta m_{21}^{2}}{\Delta m_{32}^{2}}, \\ \theta_{12}^{C}, \theta_{23}^{C}, \theta_{13}^{C}, \delta^{C}, \theta_{12}^{P}, \theta_{23}^{P}, \theta_{13}^{P} \right\},$$

 $\lambda = 0.171$ with $\chi^2 = 4.69$.

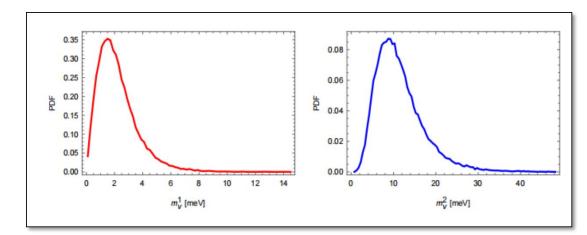
Fitting results

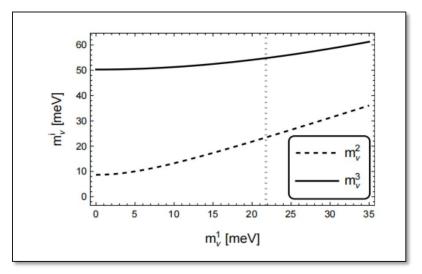

• The PDF of quark mass ratios and quark mixing angles with $\lambda = 0.171$ and $\sigma = 0.3$, while the dashed lines are observations.



Fitting results

• The PDF of lepton mass ratios and neutrion mixing angle with $\lambda = 0.171$ and $\sigma = 0.3$, while the dashed lines are observations.




Predictions on neutrion mass and m_{ee}

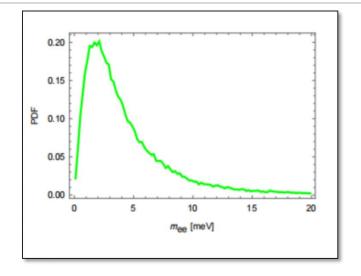
 the absolute neutrino mass can be predicted

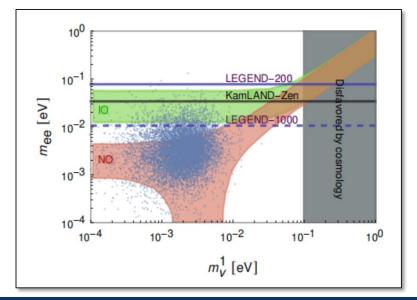
$$m_{v}^{1} = 1.6 \, {
m meV}$$

 $m_{v}^{2} = 9 \, {
m meV}$
 $m_{v}^{3} = 50 \, {
m meV}$

• the predictions are consistent with current observations!

Predictions on neutrion mass and m_{ee}


• the effective Majorana mass


$$m_{ee} = \left| \sum_{i} (U_{\rm PMNS}^*)_{1i}^2 m_{\nu}^i \right|$$

 $0.503\,{\rm meV} \lesssim m_{ee} \lesssim 18.0\,{\rm meV}$

$$\sum_{i} m_{\nu}^{i} < 0.1 \,\mathrm{eV}$$

Summary

- The Froggatt-Nielsen model provides a good explaination for the flavor pzzle;
- We propose a consistant FN model that is consitent with the current observation of mass ratio and the mixing angle. The FN charge is derive by doing a qualitative analysis;
- The FN model is naturally prefer NO case and predict a set of consistent neutrion mass, i.e., $\{m_v^1, m_v^2, m_v^3\} \approx \{1.6, 9, 50\}$ meV. Besides, a relatively large part of the preferred parameter space of m_{ee} can be detected in the near future.

Summary

- The Froggatt-Nielsen model provides a good explaination for the flavor pzzle;
- We propose a consistant FN model that is consitent with the current observation of mass ratio and the mixing angle. The FN charge is derive by doing a qualitative analysis;
- The FN model is naturally prefer NO case and predict a set of consistent neutrion mass, i.e., $\{m_v^1, m_v^2, m_v^3\} \approx \{1.6, 9, 50\}$ meV. Besides, a relatively large part of the preferred parameter space of m_{ee} can be detected in the near future.

