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1. Background

@ Higher-order corrections are more important, with the
increasing precision at the future colliders: CLIC, ILC,
CEPC, FCC, HL-LHC, STCF, SKEKB, - - -

@ Vacuum integrals are the important subsets of Feynman
integrals, which constitute a main building block in
asymptotic expansions of Feynman integrals. The
calculation of multi-loop vacuum integrals is a good
breakthrough window in the calculation of multi-loop
Feynman integrals.

@ Considering Feynman integrals as the generalized
hypergeometric functions, one finds that the D—module of
a Feynman diagram is isomorphic to
Gel'fand-Kapranov-Zelevinsky (GKZ) D—module.
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2. Relevant research

@ Hypergeometric functions of some Feynman integrals are
obtained from Mellin-Barnes representations.

Feng, Chang, Chen, Gu, Zhang, NPB 927(2018)516 [arXiv:1706.08201]
Feng, Chang, Chen, Zhang, NPB 940(2019)130 [arXiv:1809.00295]
Gu, Zhang, CPC 43(2019)083102 [arXiv:1811.10429]

Gu, Zhang, Feng, IJMPA 35(2020)2050089.

@ Using GKZ hypergeometric system, we can obtain the
fundamental solution systems of Feynman integrals.

Feng, Chang, Chen, Zhang, NPB 953(2020)114952, [arXiv:1912.01726]
Feng, Zhang, Chang, PRD 106(2022)116025 [arXiv: 2206.04224]
Feng, Zhang, Dong, Zhou, EPJC 83(2023)314 [arXiv:2209.15194].
Zhang, Feng, JHEP 05(2023)075 [arXiv: 2303.02795].

Zhang, Feng, [arXiv: 2403.13025].



I Introduction

|. Introduction

3. Generally strategy

@ We can derive GKZ hypergeometric systems of Feynman
integrals, basing on Mellin-Barnes representations and
Miller’s transformation. We can formulate Feynman
integrals as hypergeometric functions through GKZ
hypergeometric systems.

@ Steps: (1) we write out the GKZ hypergeometric systems
satisfied by the Feynman integrals. (2) fundamental solution
systems are constructed in neighborhoods of regular
singularities of the GKZ hypergeometric systems. The
combination coefficients can be determined from Feynman
integrals with some special kinematic parameters.
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1. 4-loop vacuum with 5 propagates

m,,q,

@ Feynman integral of 4-loop vacuum with 5 propagates:

8—2D dPq 1
_ 2
v= (%) | S

, (2.1)

X
[(q, + a4, + g5 + q,)* —m?](q> —m?)
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@ Through Mellin-Barnes transformation

8—2D
U, = & /HOO ds[ﬁ(—mz)sil“(—s LA +s) g, (2.2)
5 (27_”)4 i pr i i i q» .
where

Iy

[ dPq 1
h / 2m)P (g2 1 (g2) 2 (g2) (g, + g, + g, + q,)2] T (g2 —m2)
(2.3)
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@ Mellin-Barnes representation of the Feynman integral:

6 2 1
_ —my (47TARE ) 8—2D /+l<>0 s {

- 2
m5 —ioco :

Us = Griyi(anys l

AN,
() 7))
— 5
4 D 4

4
X[HF(%—]—SJ}F@—?—F s)T(5—2D+ Y s) (2.4)
i=1 i=1

1

@ Itis well known that negative integers and zero are simple
poles of the function I'(z). As all s, contours are closed to
the right in corresponding complex planes, one finds that
the analytic expression of the the four-loop vacuum integral
can be written as the linear combination of generalized
hypergeometric functions.
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Ts(aab‘ ZZZZ nnnl1x1x2x?x4? (2.6)

4 4
L(a, + > n)l(a, + 3o m)
N3y 4
H nz'r(bt +ni)
i=1
where x, = m?/m?, a = (a,,a,) and b = (b,,b,,b,,b,) With
D D
a, :4—37, a,=5—-2D, b, =b,=0b, :b4:2—§, (2.8)
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@ We can define auxiliary function
D (a, b ‘ X, u, v) = uvP % T,(a, b ‘ X) , (2.9)
Through Miller’s transformation,

19ujq)5(a, b ‘ X, u, v) =ad(a, b ‘ x,u,v), (j=12),

19\/,((1)5(37 b ‘ X, U, V) = (bk - 1)(1)5(37 b ‘ X, u, V) 9 (k: 17 74),
(2.10)

which naturally induces the notion of GKZ hypergeometric
system. Euler operators: v, = xkaxk.
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@ Through the transformation

1 X
=, (G=1,2), z,,. =V, =+ (2.11
g uja (U 12)y Zope = Vi Zep v, ( )
we have GKZ hypergeometric system for the integral
A, - J.®. =B.D,, (2.12)
1 0 0 0 O O 1 1 1 1
0O 1 0 0 0 o0 1 1 1 1
A — O 01 0 0 0 -1 0 0 0
5 O 0 01 0 o 0 —1 0 0 ’
0O 0 0 0 1 o 0 0 —1 0
O 0 0 0 o0 1 0 0 0 1 .
qT
195 (19 0 ’ 19210) )
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@ Defining the combined variables

_ Z3Z7 _ Z4Z8 _ ZSZQ y, = ZGZIO , (213)

"oz, P oz, T oz, Y oz,

we write the solutions as

<HZ )% s Yoo Vio V) - (2.14)

Here @’ = (a,, a,, ---, a,,) denotes a sequence of
complex number such that

A -d=B,. (2.15)
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@ Correspondingly the dual matrix A, of A, is

~1
. ~1
s— | -1

-1

-1
-1
-1
-1

1
0
0
0

0
1
0
0

0
0
1
0

0

0
0
1

S O =
oS = O
- o O

0 0 O

(2.16)

- o O O

The row vectors of the matrix A, induce the integer
sublattice B which can be used to construct the formal
solutions in hypergeometric series.
@ We denote the submatrix composed of the first, third,
fourth and fifth column vectors of the dual matrix as A ,,.

1345 —

-1
—1
-1
-1

1

0
0
0

0

1
0
0

o = O O

(2.17)
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@ Obviously detA . = 1 # 0, and

B1345 = A;L "&5
1 1. 0 0 06 -1 0 0 0 -1
o o0 1 0 0 -1 1 0 0 -1
o o o0 o1 0 -1 0 1 0 -1 (2.18)
o o0 o0 o0 1 -1 0 0 1 -1

Taking 4 row vectors of the matrix B,,,, as the basis of
integer lattice, one constructs the GKZ hypergeometric
series solutions in parameter space through choosing the
sets of column indices .  [1,10] (i =1,--- ,16) which are
consistent with the basis of integer lattice B, .
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@ We take the set of column indices I, = [2,6,--- ,10], i.e.
the implement J, = [1,10] \ I, = [1, 3,4, 5]. The choice on
the set of indices implies the exponent numbers
a, = a, = o, = a, = 0. One can have

4
o, =a, —a,, a6:Zbl.—a,—4, o, =1-b,
i=1
3
ay=1-b, a,=1-b, oy, =Y b —a —3. (2.19)

i=1

Combined with Eqg. (2.8), we can have

D D D
a,=—=——1, a = =7, a=0,=0=——1,a,=—-1. (2.20)

15/37



II. 4-loop vacuum: general case

ll. 4-loop vacuum: general case

@ According the basis of integer lattice B, ., the

hypergeometric series solution can be

,_1 Q—l Q—l _ Y\ (Y, \"5 (Y \ s
o = () G ()" ()
’ Y4 Vs Y4 Y4

13452

I\)

¢ (n) = =i =1 (2.21)

Here, the convergent region is

—_—

Einag = {00 v v YL <l il < yals Dl <Dyl sl < yal}

which shows that <I>(1) (a,z) s in neighborhood of regular
singularity co.
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@ In a similar way, we can obtain other fifteen hypergeometric
solutions which are consistent with the basis of integer
lattice B,,,;, and the convergent region is also Z, .

@ The above sixteen hypergeometric series solutions
<I>§1’245] (or, z) whose convergent region is Z,,,,., can constitute
a fundamental solution system.

@ Multiplying one of the row vectors of the matrix B ,,; by -1,
the induced integer matrix can also be chosen as a basis of

the integer lattice space of certain hypergeometric series.

[1345
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@ Taking 4 row vectors of the following matrix as the basis of
integer lattice,

= diag(—1,1,1,1) - B,

1345

-1 -1 0 0 0 1 0 0 0 1
0 0o 1 0 0 -1 1 0 0 -1
N 0 o 01 0 -1 0 1 0 -1 (2.22)

o o o0 01 -1 0 0 1 -1

one obtains sixteen hypergeometric series solutions
<I>fg45] (v, z) similarly. The convergent region is

Ezng4ﬂ = {()ﬁ7 Yas Vas y4) ’)H| <1, ’)ﬁ‘ <1, |)%‘ <1, ‘}%’ < 1} )

which shows that (I)[(2451 (o, 7) are in neighborhood of regular

singularity 0 and can constitute a fundamental solution

system.
18/37
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2. 4-loop vacuum with 6 propagates for type A

D

m.q,+q,

@ Feynman integral of 4-loop vacuum with 6 propagates A:

U ( 2 )SZD/ dPq 1
“oUw @m)P (g7 —m?) (a3 —m)l(a, + q, + ¢, + 4,)* — m3]

1
“las+ 0.7 =@ —m)( — )’ (2:23)
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GKZ hypergeometric system for the 4-loop vacuum integral A

A Uy P, =B, D, (2.24)
A6A = ( Ill><11 AXGA )11><16 )
1 1.1 1 0 -1 0 0 0 -1 -1
1 1 1 1 0 O —1 0 0 -1 -1
Agy,"=l1 1110 0 0 -1 0 -1 -1 |,
1 1 0 0 1 0 0 0 0 -1 -1
1 1 0 0 0 O 0 0 —1 0 0
Jo=0, 0, ),
B, = (~a,, -+, —a;, by—1,-- b, —1). (2.25)
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3. 4-loop vacuum with 6 propagates for type B

m,,q, +q, +4q,

“ m,,q, +q,+4q,

@ Feynman integral of 4-loop vacuum with 6 propagates B:

U —<2)82D/ d°q 1
o RE 27)P (¢> —m?)[(q, + ¢, + q,)* — m?]

1
X
(2 —m2)[(q, +q; +q,)* —m?](q> —m?)(q? —m?)

(2.26)
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GKZ hypergeometric system for the 4-loop vacuum integral B

A6B '563@63 - BﬁB(I)ﬁs ’ (2'27)
A6B = ( 113><13 AX6B )13><18 ’
Axen r=
1 1.1 1 0 0 -1 0 0 0 0 -1 -1
1 1 1 1 0 O 0 —1 0 0 0 -1 -1
1 1. 0 O 1 1 0 0 —1 0 0 -1 -1 ,
1 1 0 0 1 1 0 0 0 —1 0 -1 -1
1 1 0 0 0 O 0 0 0 0 —1 0 0
296;:(29117” ’ 19118) ’
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4. 4-loop vacuum with 7 propagates for type A

@ Feynman integral of 4-loop vacuum with 7 propagates A:

8—2D d°q 1
2
U7A:(ARE> /2 D (2 _ 2 2 22 — m2
( ﬂ-) (ql ml)[(ql + q3 + q4) mz](qz mz)
1
X .
(¢, + a5 +q,)* — m2][(q5 + q,)* — m?](g? — m2)(q? — m?)

(2.29)
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GKZ hypergeometric system for the 4-loop vacuum integral

A7A "57Aq)7A = B7A(I)7A ) (2'30)
A7A = ( Il4><14 Ax7A )14><20 ’
AX7A r =
1 111000 -1 0 O O 0 -1 -1
lrt 11000 0 -1 0 0 0 -1 -1l
11 oo011o 0 0 -1 0 0 -1 -1
1100 1 1.0 0 0 0 -1 0 -1 -1 [
1100001 0 0 0 0 0 -1 -1
1100000 0 0O 0O 0 -1 0 0
-
797A = (0217 ’ 19‘"-20) ’

B, 7= (—a, -, —a,b 1, b —1). (2.31)
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5. 4-loop vacuum with 7 propagates for type B

my,q,

m,. q, m,,q,+q,

N

@ Feynman integral of 4-loop vacuum with 7 propagates B:

a2\ qu 1
U = (43) ./@ﬂDW%w@M%+%F—m%ﬁ—mb

. (2.32)

s+, + 47 — m2[(q, + 0,7 — (g2 — m2) (g2 — m2)
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GKZ hypergeometric system for the 4-loop vacuum integral

Ay '573(1)73 =By®, (2.33)
As = (Tigrs Asa )16><22 ’

AX7BT_

11111 10O0-1 0 O O -1 -1 -1 -1
11111100 O -1 0 O -1 -1 -1 -1
11110 01 O O O O O -1 -1 -1 -1
11110 0 00 0O O -1 0 0 O -1 —1|"
1 1.0 0 0 0 01 O O O O O 0 -1 -1

1 1.0 0000 OO O O -1 0 0 0 O

o7

Ir=, . 9,),

B,  =(-a, -, —a, b —1,---, b, —1). (2.34)
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1. 4-loop vacuum with 5 propagates: 2 massive m,,m, # 0

@ GKZ hypergeometric system can be simplified as

ASI '651(I>51 = Bsq)51 ) (3.1)
1 0 0 0 0 O 1
O 1 0 0 O O 1
o 01 0 0 0 -1
Ay = 0O 0 01 0 O 0 (3:2)
O 0 0 0 1 O 0
O 0 0 0 O 1 0
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1. 4-loop vacuum with 5 propagates: 2 massive m,,m, # 0
@ The dual matrix A, of A,, is

Ay=(-1 -1 1 0 0 0 1). (3.4)

51

@ For integer sublattice B,, = A,,, one of corresponding
hypergeometric series solution can be written as

4-32 5_2p
O () = LF, R N (3.5)
51 22
withy, = x, = m?/m?, and ,F, is Gauss function:
a, b _ o (@)n(b)n n
F, < . x) = ;) 2O X (3.6)

with (a), = T(a + n)/T(a).
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1. 4-loop vacuum with 5 propagates: 2 massive m,,m, # 0

@ For integer sublattice B,, = A,,, the another
hypergeometric series solution can be written as

_ 3-D, 4-3L
o200 = 0 b?

2

y1> . (38.7)

Here, the convergent region of <I>[1512( sy, | < L.

@ In the region |y,| < 1, the scalar integral is a linear
combination of two fundamental solutions:

D, (y,) = c<1><1><1>( )+c >c1><><y). (3.8)

[51] ~ [51] [51] ~ [51]
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1. 4-loop vacuum with 5 propagates: 2 massive m,,m, # 0

@ Multiplying one of the row vectors of the integer matrix B,
by -1, the corresponding system of fundamental solutions
for is similarly composed by two Gauss functions:

3D
3 _ D _y -2 3-D|1
000 =¥ n (T 7).
_ 5-2D, 4-32 11
q)(sl)(yl) :(yl)ZD 52F1 _é — ], (3.9)
[ 2 7 Y

which the convergent region is |y,| > 1.
@ In the region |y,| > 1, the scalar integral is a linear
combination of two fundamental solutions:

By, (v,) = €120 (v,) + CeN(y,) . (3.10)

[51] ~ [51] [51] ~ [51]
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1. 4-loop vacuum with 5 propagates: 2 massive m,,m, # 0

@ Asmi < m? m,=m,=m, =01 =1 ,+---,where

I ( 2 )82’)/ dPq 1
o Cm)P qia;q7 (9, + 4, + a5 + 4,)* (a5 — m3)

- (;Z)?S (47TA§E)8_2DF 4-32ypis_opy . (3.11)

2

2
ms

This result indicates

—m® ,4wA2 \8-2D 3D
(H — m RE e _
c) (47r)8( " ) (4 - )05 -2D). (3.12)
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1. 4-loop vacuum with 5 propagates: 2 massive m,,m, # 0

© Asm?>>m?and m,=m, =m, =0,1, =1 __+---,where

I ( 2 )SZD/ dPq 1
beo T \TRe 2m)P (¢? — m?)¢>q*(q, + 4, + 4, + q,)* >

_ (;7;:1)168 <47rA§E>8—2DF 4 32)1“(5 —2p). (3.13)

2

2
m;

This result indicates

—m® ;4w\ \8-2D 3D
4 — m; RE e .
@ (47r)8( m? ) [(4— )05 —2D) . (3.14)
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1. 4-loop vacuum with 5 propagates: 2 massive m,,m, # 0
@ Mellin-Barnes representation

6 2 j 2
_ 41 A 8—2D 1 +ioco m
s ( - 2RE> : dsl (%)S]F(_SJ
m; 271 J_iso m;
D 3D
XP(E —1- SI)F(4 - 7 +

The residue of simple pole of I'(—s, ) provides C{}) &) (y,),
that of simple pole of T'(D/2 — 1 — s,) provides C(SZI])<1>§52%( ),

that of simple pole of I'(4 — 37 +s,) provides C0)20) (y,),

51]

that of simple pole of T'(5 — 2D + s,) provides C[ ><I>(4)( .

51]

s)T'(5—2D+s,). (3.15)

—m® S4AmAZ \ 8-
; (4 ARE>8 wo 32D)F(3_ )F(l_g),(s.m)

2
ms
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2. 4-loop vacuum with 6 propagates: 3 massive
@ Type A:i9-13th, 64GB: FeynGKZ ~ 0.1 s, FIESTA~ 1500 s

SunLim = 15;

ParameterSub = (De 4 -2.0.001, € +0.001, a;+1, 3,1, 331,
2321, 8551, ag+1, My > 0.01, My 0.1, mg 10}
. [ser 5

5 SumLim] ;
Numerical result = 1.2624x10'
Time Taken 0.059761 seconds

SumLim = 15;
ParameterSub = {De»4-2:0.001, € +0.001, 3, »1, 3,1, 3321,

221,351, ag+1, M 0,01, m 0.1, m+10);
FIESTAEvaluate[ L

InvariantList,

FIESTA Value = 1.26241x10'
Time Taken 1525.73 seconds

@ Type B:i9-13th, 64GB: FeynGKZ ~ 0.1 s, FIESTA~ 500 s

SumLim = 15;

ParameterSub = {De+4-20.001, € 0.001, 3, >1, 3,1, a3~ 1,
2521, 8551, ag>1, M > 0.1, m 0.2, mg 10} ;

NumericalSum[SeriesSolution, ParameterSub, SumLin];

Numerical result = -4.07562x10'

Time Taken ©.092314 seconds

SunLim = 15;
ParameterSub = {De >4-20.001, € >0.001, a; 51, 3,1, a3 1,
221, 35+1, 351, M >0.1, m=0.2, ms=>10 };

FI L

Invariantlist,

FIESTA Value -

4.07552 x 10"
Time Taken 570.975 seconds
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3. 4-loop vacuum with 7 propagates: 3 massive
@ Type A:i9-13th, 64GB: FeynGKZ ~ 0.1 s, FIESTA~ 500 s

SunLim = 153
ParameterSub = {De 4 -20.001, € »0.001, a1 > 1, a1, a1,
a1, 8551, 31, 3721, M 2001, m=0.1, m~10};
Numericalsum[SeriesSolution, ParametersSub, SunLin];

Numerical result = -8.23731x16'
Tine Taken 0.082045 seconds

SumLin = 15;
Parametersub = (De 4 -2:0.001, € »0.001, a; +1, 3,1, a3 1,

201, 8551, 351, 3,51, M 50.01, m50.1, m>10);

Loop! » InvariantList, 15

FIESTAEvaluate[

FIESTA Value = -8.23727x10%2

Time Taken 587.565 seconds

@ Type B:i9-13th, 64GB: FeynGKZ ~ 0.1 s, FIESTA~ 6000 s

SumLin = 15;
Parametersub = (De»4-2-0.001, € +0.001, a; » 1, a1, a3 »9/10,
a1, 3551, 31, a1, my 50.01, my50.1, M 510}
i i i » SumLin] ;

Numerical result = 1.43756x10°

Time Taken 0.094408 seconds

SumLim = 15;
ParameterSub = (De >4 -20.001, € »0.001, a; » 1, a+1, a3 »9/10,
2io1, 8501, 821, 271, m 20,01, m=0.1, m 10}
L Invariantlist, =

FIESTA Value - 1.43754x10°
Time Taken 6370.08 seconds
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V. Summary

@ Using Mellin-Barnes representation and Miller’s transformation, we
derive GKZ hypergeometric systems of 4-loop vacuum Feynman
integrals.

@ In the neighborhoods of origin 0 including infinity co, we can
obtain analytical hypergeometric series solutions through GKZ
hypergeometric systems.

@ One can see that the computing time using the GKZ
hypergeometric series solutions is less than that using numerical
program FIESTA.

@ In order to derive the fundamental solution system in
neighborhoods of all possible regular singularities, next we will
embed the vacuum integrals in Grassmannian manifold.
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