Detecting the Fifth-Force via Superconducting Josephson Junctions

Yu Cheng (程昱)

chengyu@sjtu.edu.cn

YC, Jie Sheng and T. T. Yanagida, [arXiv: 2402.14514 [hep-ph]] [arXiv: 2405.16222 [hep-ph]]

Fundamental Forces

What we know: four fundamental forces

Gravity

Electromagnetism

Is there a fifth fundamental force?

- Theory
- Experiment

Fifth force: Well-motivated Theory () ジネえ通大学

An Example: B-L Extension of the SM: $SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$

- 1. SM: (B and L) anomalous, (B-L) non-anomalous.
- 2. Gauge anomalies canceled.

 $U(1)_{B-L}$ Gauge Boson mediate the B-L force. $V_{B-L}(r) = g_{B-L}^2 \frac{Q_{B-L}e^{-m_A'r}}{r}$.

Charge table	1	V _R	e_{R}	q	u _R	d _R	$e^{-}(\text{electron}): -1$
SU(1) _L x U(1) _Y	(2,-1/2)	(1,0)	(1,-1)	(2,1/6)	(1,2/3)	(1,1/3)	p'(proton) : +1 n(neutron) : +1
U(1) _{B-L}	-1	-1	-1	1/3	1/3	1/3	Atom : $+N$ (neutron)

How to Probe? Classical way

• Test of EP: $\frac{GMm}{r^2} = F = ma \rightarrow a = \frac{GM}{r^2}$ All objects experience the same acceleration in the same gravitational field.

- Change the materials of the test body (red ball)
- Measure the Eotvos parameter:

$$\eta_{1,2} = \frac{a_1 - a_2}{(a_1 + a_2)/2} = \frac{(m_g/m_i)_1 - (m_g/m_i)_2}{[(m_g/m_i)_1 + (m_g/m_i)_2]/2}$$

For B-L case: $V_i(r) \equiv V_G^i(r) + V_{B-L}^i(r) = -G \frac{m_i M}{r} \left(1 + \alpha e^{-r/\lambda}\right)$ $V_1(r) \neq V_2(r) \Rightarrow a_1 \neq a_2 \qquad \eta \sim 10^{-13 \sim 15}$

Constraint on B-L

 $V_{B-L}(r) = g_{B-L}^2 \frac{Q_{B-L} e^{-m_{A'}r}}{r}.$

Comparison with gravity:

$$g_{B-L}^2 \sim \frac{m_N^2}{M_P^2} \rightarrow g_{B-L} \sim 10^{-19}$$

Classical test. How about Quantum test.

Vector boson mass [eV]

٠

Phase Evolution

- Time dependent Schrodinger equation: $i\partial_t |\psi\rangle = \hat{H} |\psi\rangle$
- The state's phase can evolve with time. (H: time independent, position dependent) $iH(\hat{x})t(x) = iV(x_0)t(x_0)$

$$|1\rangle \rightarrow e^{iH(\hat{x})t}|1\rangle = e^{iV(x_1)t}|1\rangle, \qquad \phi_1(t) = V(x_1)t$$
$$|2\rangle \rightarrow e^{iH(\hat{x})t}|2\rangle = e^{iV(x_2)t}|2\rangle, \qquad \phi_2(t) = V(x_2)t$$

• Phase difference between 1 and 2:

$$\Delta \phi = \phi_1 - \phi_2 = [V(x_1) - V(x_2)] * t$$

$$\begin{array}{l} \textbf{B-L (feeton) Potential} \\ \phi_1(\tau, d) \\ = & \tau g_{B-L}^2 Q_{B-L} n \int \int \int \frac{e^{-m_{A'}R(x,y,z)}}{R(x,y,z)} dx dy dz \\ = & \tau g_{B-L}^2 Q_{B-L} n \int_0^b \int_0^\infty \frac{e^{-m_{A'}\sqrt{(d+z)^2+r^2}} 2\pi r}{\sqrt{(d+z)^2+r^2}} dr dz \\ = & \tau g_{B-L}^2 Q_{B-L} n \frac{2\pi e^{-m_{A'}d} \left(1-e^{-m_{A'}b}\right)}{m_{A'}^2}. \end{array}$$

Z Similarly, we can have the phase for state 2, $\phi_2 = \phi(\tau, d + \delta).$

And, $\Delta \phi = \phi_1 - \phi_2$.

$$\Delta \phi = \tau g_{B-L}^2 Q_{B-L} n \frac{2\pi (e^{-m_{A'}d} - e^{-m_{A'}(d+\delta)})}{m_{A'}^2}$$

e.g, $m_{A'} \sim 0.01 \ eV$, $\frac{1}{m_{A'}} \sim 10^{-3}$ cm.

1. Thickness of plate large enough as $m_{A'} b \gg 1$. Take b = 1cm.

2. Short-distance limit, $m_{A'} d \sim 0$, such as $d = 1\mu m = 10^{-4} cm$.

$$\Delta \phi = \tau g_{B-L}^2 Q_{B-L} n \frac{2\pi (e^{-m_{A'}d} - e^{-m_{A'}(d+\delta)})}{m_{A'}^2} \qquad \Delta \phi_f \simeq \frac{2\pi \tau g_{B-L}^2 Q_{B-L} n \delta}{m_{A'}}.$$
$$\Delta \phi_f = 3 \times 10^{-3} \times \left(\frac{g_{B-L}}{10^{-16}}\right)^2 \left(\frac{\tau}{1\,\mathrm{min}}\right) \left(\frac{10^{-2}\,\mathrm{eV}}{m_{A'}}\right) \left(\frac{\delta}{100\,\mathrm{nm}}\right)$$

Q: How to detect a small phase difference induced by B-L gauge potential?

The Schrodinger equation within the insulator region is:

$$-\frac{\hbar^2}{2(2m_e)}\nabla^2\Psi(\mathbf{r}) = (E-V)\,\Psi(\mathbf{r})$$

The general solution can be parametrized as, $\Psi(x) = C_1 \cosh x / \xi + C_2 \sinh x / \xi,$

with
$$\xi = \sqrt{1/4m_e(V-E)}$$
.

Furthermore, by considering the requirements of continuity, we match the boundary conditions and get,

$$C_1 = \frac{\sqrt{n_1}e^{i\phi_1} + \sqrt{n_2}e^{i\phi_2}}{2\cosh(\epsilon/2\xi)}, C_2 = \frac{\sqrt{n_1}e^{i\phi_1} - \sqrt{n_2}e^{i\phi_2}}{2\sinh(\epsilon/2\xi)}.$$

Ref: Applied Superconductivity by Rudolf Gross & Achim Marx

The current density is defined as,

 $J = -(2e/m_e) \operatorname{Re}(\Psi^* i \nabla \Psi)$

The current is induced by phase difference

$$J = \frac{e\sqrt{n_1 n_2}}{m_e \epsilon} \sin \Delta \phi, \quad \Delta \phi \equiv (\phi_1 - \phi_2).$$

Ref: *Applied Superconductivity* by Rudolf Gross & Achim Marx

We relate the phase difference with a physical phenomenon!

11

1. Source is still the graphite cubic.

2. State 1 and 2 becomes the single cooper-pair state.

$$\Delta \phi_f \simeq \frac{2\pi\tau g_{B-L}^2 Q_{B-L} n \delta}{m_{A'}}.$$

$$\phi_f = 3 \times 10^{-3} \times \left(\frac{g_{B-L}}{10^{-16}}\right)^2 \left(\frac{\tau}{1\,\mathrm{min}}\right) \left(\frac{10^{-2}\,\mathrm{eV}}{m_{A'}}\right) \left(\frac{\delta}{100\,\mathrm{nm}}\right)$$

Step2.

Disconnect the loop and move the plate nearby \cdot The phase starts to evolve \cdot

Possible Backgrounds

(1) · Gravity

The plate also contributes a gravity potential. Again, we can estimate that,

$$\phi_g(d) = \tau \times \int_0^b \oint_S \frac{2Gm_e\rho_C}{\sqrt{(d+z)^2 + x^2 + y^2}} dSdz,$$
$$\Delta\phi_g = \phi_g(d) - \phi_g(d+\delta) \simeq 10^{-11}$$

(2)∙ Thermal Noise

As long as the temperature is non-zero, the electrons in circuit have some thermal motions and induces some background current.

 $I_T \approx ekT/\hbar \approx 10^{-7} (T/1K)A$

The lower the temperature, the better. Currently, in the laboratory, we can achieve temperatures as low as 1 millikelvin (mK).

(3)· Quantum Fluctuation

For a coherent state containing N particles, its phase has a quantum fluctuation due to the numberphase uncertainty relationship,

 $\Delta \mathbf{N} \cdot \Delta \mathbf{\phi} > \hbar$

Taking the setups above, the total number of Cooper-pairs is around $N \sim 10^7$. The fluctuation of number is then $\Delta N \sim \sqrt{N} \sim 10^3$. As a result, the sensitivity of phase is $\Delta \phi > 10^{-3}$.

Projected Constraint $\Delta \phi > 10^{-3}$

- 1. Interplay between quantum mechanics and new physics.
- 2. The quantum mechanical tests of fifth force at scale of millimeters.
- 3.Strongest constraint on Yukawa fifth force in the mass range (0.01, 10)eV. Strongest constraint for Feeton DM candidate in that mass range.

4.A new application of the Josephson junction.

Back Up

1. Review the Gravity Background

The disadvantages of gravity in detection compared to the fifth force.

(1) · The gravity coupling is suppressed by mass of electron.
(The test of lepton gravity is also a long standing challenge!)

(2) \cdot Gravity does not decay much along the separation δ .

2. Improvements in the experimental setup.

3. Quantum Test of mm Scale Gravity.

It is the first time that the quantum mechanical measurement of gravity can reach such a small scale. 1. Through electron-lattice-electron (phonon mediated) interaction, the electrons have a small net attractive force between each other around fermion surface.

2. Electrons pair to form Cooper-pairs, which is an effective boson. They attend to form a coherent state because of bose-enhancement. The state is described by a classical wave: $\Psi_1 = \sqrt{n_1} e^{i\phi_1}$

3. To excite a coherent ground state, we need a huge amount of energy. A normal scattering can not provide such an energy. Thus it will no longer scatter.

Ref: Feynman's lecture on superconductivity

Based on Lenz's law, superconductors can easily generate a sufficiently large opposing current.

$$E = B = 0$$

Superconductor naturally provides a electromagnetic free environment which is helpful for a tiny-force detection.

В

$$\Psi_1 = \sqrt{n_1} e^{i\phi_1}$$

The London penetration length (λ) refers to the depth at which a magnetic field can penetrate into a superconductor. The size of the superconductor should be larger than this length. In our case, we assume that the penetration length, $\lambda = 50$ nm, length of the superconductor is a = 100 nm. Additionally, the length, width, and height of the superconductor are approximately of the same order.

$$m_1 = \frac{m_e}{e^2 \lambda_L^2} = 1.22 \times 10^{22} \,\mathrm{cm}^{-3}$$