Probing lepton flavour violating ALPs at $\mu^+\mu^+$ and μ^+e^- colliders

Lopamudra Mukherjee

with L. Calibbi, T. Li, Y. Yang, arXiv: 2406.xxxx

TOPAC 2024, Southeast University, Nanjing June 1, 2024

Axion-like particles

- ALPs pseudo Nambu-Goldstone bosons (PNGBs), that arise from the spontaneous breaking of a global U(1) symmetry. [See talk by L. Calibbi]
- Here we focus on **lepton-flavour-violating (LFV)** ALPs with generic dim 5 interaction :

$$\mathcal{L}_{a\ell\ell} \supset \sum_{i} \frac{\partial_{\mu}a}{2f_{a}} \,\bar{\ell}_{i} C^{\mathcal{A}}_{\ell_{i}\ell_{i}} \gamma^{\mu} \gamma_{5} \ell_{i} + \sum_{i \neq j} \frac{\partial_{\mu}a}{2f_{a}} \,\bar{\ell}_{i} \gamma^{\mu} \left(C^{\mathcal{V}}_{\ell_{i}\ell_{j}} + C^{\mathcal{A}}_{\ell_{i}\ell_{j}} \gamma_{5} \right) \ell_{j} \,,$$

 $f_a = \text{scale of } U(1) \text{ breaking.}$

- LFV couplings may arise naturally or at 1-loop level.
- We introduce a mass term $\frac{1}{2}m_aa^2$ that arises from explicit breaking of the U(1) symmetry and treat m_a as a free parameter.

Current status of LFV ALPs

Lepton-flavour-violating invisible ALPs

Decays mediated by dim-5 operators: much larger NP scales can be reached than $\mu \rightarrow e\gamma$, $\mu \rightarrow 3e$, $\mu \rightarrow e$ conv. (from dim-6 ops, NP scale reach ~10⁷-10⁸GeV)

ALPs at muon experiments

Lorenzo Calibbi (Nankai)

Current status of LFV ALPs

Decays mediated by dim-5 operators: much larger NP scales can be reached than $\mu \rightarrow e_V$, $\mu \rightarrow 3e$, $\mu \rightarrow e$ conv. (from dim-6 ops, NP scale reach ~10⁷-10⁸GeV)

ALPs at muon experiments

Lorenzo Calibbi (Nankai)

μ TRISTAN proposal : $\mu^+\mu^+$ and μ^+e^- colliders

- The idea is to cool and focus μ^+ beams, a technology developed at JPARC [Abe et al., 1901.03047]
- The μ^+ beams could be accelerated up to 1 TeV and made to collide with :

μ TRISTAN proposal : $\mu^+\mu^+$ and μ^+e^- colliders

- The idea is to cool and focus μ^+ beams, a technology developed at JPARC [Abe et al., 1901.03047]
- ${\, \bullet \,}$ The μ^+ beams could be accelerated up to 1 TeV and made to collide with :

30 GeV e^- beam

- ightarrow "Higgs factory" with $\sqrt{s} \simeq 346~{
 m GeV}$
- ightarrow Expected integrated luminosity $\mathcal{L} = 1 \text{ ab}^{-1}$

μ TRISTAN proposal : $\mu^+\mu^+$ and μ^+e^- colliders

- The idea is to cool and focus μ^+ beams, a technology developed at JPARC [Abe et al., 1901.03047]
- $\bullet\,$ The μ^+ beams could be accelerated up to 1 TeV and made to collide with :

ALP Processes at \muTRISTAN

ALP Processes at μ TRISTAN

ALP Processes at μ TRISTAN

We focus on the following modes as a way to probe LFV ALP couplings :

•
$$C_{e\mu}^{A,V}$$
: $e^{-}\mu^{+} \rightarrow a\gamma$;
• $C_{\mu\tau}^{A,V}$: $e^{-}\mu^{+} \rightarrow e^{-}\tau^{+}a$ and $\mu^{+}\mu^{+} \rightarrow \mu^{+}\tau^{+}a$;

•
$$C_{e\tau}^{\mathcal{A},\,\nu}$$
: $e^-\mu^+ \to \tau^-\mu^+ a$.

Event analysis

- Signal and background events are generated using MADGRAPH, PYTHIA, and MADSPIN.
- Detector response is simulated using DELPHES.
- Resulting events are analysed using ROOT.
- We apply the default basic generator-level cuts on the final-state photons or charged leptons in MADGRAPH.
- Statistical significance is defined as

$$\mathcal{S} = \frac{N_{\mathrm{S}}}{\sqrt{N_{\mathrm{S}} + N_{\mathrm{B}}}}, \quad N_{\mathrm{S(B)}} = \sigma_{\mathrm{S(B)}} \times \varepsilon_{\mathrm{S(B)}} \times \mathcal{L},$$

• Signal efficiency :
$$\varepsilon_S \equiv \varepsilon_{sel} \times \varepsilon_{cut}$$

selection efficiency signal acceptance after cuts.
Includes geometric acceptance of

detector and particle id probabilities

• Finally, we show the expected 95% CL exclusion potential of μ TRISTAN.

Process 1. $e^-\mu^+ \rightarrow a\gamma$

- In presence of lepton flavour violating (LFV) coupling C^{V,A}_{eµ} only :
- A. Light ALPs : $m_a < m_e + m_\mu$:

Signal : $e^-\mu^+ \rightarrow \gamma + \text{Invisible ALP}$ SM Background : $e^-\mu^+ \rightarrow \gamma + \nu_e \bar{\nu}_{\mu}$, quite significant!

B. Heavy ALPs : $m_a > m_e + m_\mu$:

 $\begin{array}{l} \mbox{Signal}: e^-\mu^+ \rightarrow \gamma + a \ (\rightarrow e^+\mu^-) \\ \mbox{SM Background}: e^-\mu^+ \rightarrow \\ \gamma \nu_e \bar{\nu}_\mu W^- (\rightarrow \mu^- \bar{\nu}_\mu) W^+ (\rightarrow e^+ \nu_e), \\ \mbox{but negligibly small!} \end{array}$

Process 1. $e^-\mu^+ \rightarrow a\gamma$

- In presence of lepton flavour violating (LFV) coupling $C_{e\mu}^{V,A}$ only :
- A. Light ALPs : $m_a < m_e + m_\mu$:

Signal : $e^-\mu^+ \rightarrow \gamma + \text{Invisible ALP}$ SM Background : $e^-\mu^+ \rightarrow \gamma + \nu_e \bar{\nu}_{\mu}$, quite significant!

B. Heavy ALPs : $m_a > m_e + m_\mu$:

 $\begin{array}{l} \mbox{Signal}: e^-\mu^+ \rightarrow \gamma + a \ (\rightarrow e^+\mu^-) \\ \mbox{SM Background}: e^-\mu^+ \rightarrow \\ \gamma \nu_e \bar{\nu}_\mu W^- (\rightarrow \mu^- \bar{\nu}_\mu) W^+ (\rightarrow e^+ \nu_e), \\ \mbox{but negligibly small!} \end{array}$

• If lepton flavour conserving (LFC) couplings are also open, then ALPs can further decay to e^+e^- , $\mu^+\mu^-$ if kinematically allowed.

Selection efficiency

- Due to the asymmetric beam configuration ($E_e = 30$ GeV, $E_{\mu} = 1$ TeV), decay products highly boosted along the muon beam direction, with a very large pseudorapidity $|\eta|$.
- A substantial proportion of signal events is lost affecting signal efficiency.

Preliminary Results : $e^-\mu^+ \rightarrow a\gamma$

$$g_{\ell_i \ell_j}^{V,A} pprox m_{\ell_j} rac{C_{\ell_i \ell_j}^{V,A}}{2f_a} \ (i < j), \quad g_{\ell_i \ell_i}^A = m_{\ell_i} rac{C_{\ell_i \ell_i}^A}{f_a}$$

$$___$$
: $|\eta| < 2.5$
 $----$: $|\eta| < 3.5$

Process 2. ALP produced through LFV τ **interactions**

- Production cross-sections enhanced by the tau-mass.
- For τ identification, we use the hadronic/leptonic decay of τ .
- Light ALPs : eg, $m_a = 0.01$ GeV

	Signal	σ_{S} [fb]	Background	σ_B [fb]
$C_{\mu au}$	$\mu^+\mu^+ o \mu^+ au^+$ a, $ au$ as jet	0.25	$\mu^+\mu^+ o \mu^+ au^+ ar{ u}_\mu u_ au$, $ au$ as jet	180
	$e^-\mu^+ ightarrow e^- au^+$ a, $ au$ as jet	1.4	$e^-\mu^+ ightarrow e^- au^+ ar{ u}_\mu u_ au$, $ au$ as jet	24
$C_{e\tau}$	$e^-\mu^+ ightarrow au^-\mu^+$ a, $ au$ as jet	0.038	$e^-\mu^+ o au^-\mu^+ ar u_ au u_e$, $ au$ as jet	4.8

- $\rightarrow\,$ Background cross-section is huge.
- $\rightarrow\,$ Collider constraints not competitive compared to constraints from LFV $\tau\,$ decays.
- Heavy ALPs : eg, $m_a = 10$ GeV

	Signal	σ_S [fb]	Background	σ_B [fb]
$C_{\mu\tau}$	$\mu^+\mu^+ \rightarrow \mu^+\tau^+ {\rm a,}~{\rm a} \rightarrow \tau^+\mu^-$	0.14	$\mu^+\mu^+ ightarrow W^+W^+Z \bar{\nu}_\mu \bar{\nu}_\mu, \ W ightarrow \tau \nu_\tau, \ Z ightarrow \mu^+\mu^-$	$6 imes 10^{-4}$
	${\rm e}^-\mu^+ \rightarrow {\rm e}^-\tau^+ {\rm a},~{\rm a} \rightarrow \tau^+\mu^-$	0.93	$e^-\mu^+ ightarrow u_e ar{ u}_\mu + 4W, \ W ightarrow \ell u_\ell$	$9 imes 10^{-17}$
$C_{e\tau}$	${ m e}^-\mu^+ ightarrow au^-\mu^+$ a, a $ ightarrow au^-{ m e}^+$	0.017	$e^-\mu^+ ightarrow u_e ar{ u}_\mu + 4W, \ W ightarrow \ell u_\ell$	$9 imes 10^{-17}$

 \rightarrow Negligible background compared to the signal.

Preliminary results

For hadronic taus in final state

Preliminary results

Lopamudra Mukherjee, Nankai University

- We study the potential of ALP searches at proposed $e^-\mu^+$ and $\mu^+\mu^+$ colliders.
- The LFV interactions of heavier ALPs, for which the decays $\ell_i \rightarrow \ell_j a$ are kinematically forbidden, are comparatively poorly constrained.
- We highlight some distinctive signatures virtually affected by no (irreducible) SM background (BG).
- We do a detailed sensitivity study for both the signal and background.
- We obtain 95% C.L. on $g_{\ell_i \ell_j} \gtrsim 10^{-4}$ for $1 \ {\rm GeV} < m_a \lesssim 1 \ {
 m TeV}.$

- We study the potential of ALP searches at proposed $e^-\mu^+$ and $\mu^+\mu^+$ colliders.
- The LFV interactions of heavier ALPs, for which the decays $\ell_i \rightarrow \ell_j a$ are kinematically forbidden, are comparatively poorly constrained.
- We highlight some distinctive signatures virtually affected by no (irreducible) SM background (BG).
- We do a detailed sensitivity study for both the signal and background.
- We obtain 95% C.L. on $g_{\ell_i \ell_j} \gtrsim 10^{-4}$ for $1 \ {\rm GeV} < m_a \lesssim 1 \ {
 m TeV}.$

THANK YOU!!