Ts}ung-Dao LeeSjl;stltute @g JY\%?_SJTL J m

(Geant4) Simulation and Concepts

Yulei Zhang

Shanghai Jiao Tong University
January 20%, 2023

DarkSHINE C++ Programming Tutorial

l What are Monte Carlo (MC) techniques for? =l

®Numerical solution of a (complex) macroscopic problem, by simulating the

microscopic interactions among the components

studies, etc.

®In physics, elementary laws are (typically) known — MC is used to predict the
outcome of a (complex) experiment

* Exact calculation from the basic laws is unpractical

e Optimize an experimental setup, support data analysis

®Monte Carlo for particle tracking (interaction of radiation with matter)

Yulei Zhang | DarkSHINE C++ Programming Tutorial

' Most common application in HEP: particle trackinm%ﬁﬁ

® Problem: track an electron in a detector and determine the energy spectrum deposited.

® All physics is known from textbook (Compton scattering, photoelectric effect, etc.)

® However, the analytical calculation is a nightmare (%) — Monte Carlo simulation clearly wins

Yulei Zhang | DarkSHINE C++ Programming Tutorial 3

l Why Simulate Anything? _ e=esmdNl

@® We can (usually) only build one detector
* What will we miss because of our detector design?
 How would a slightly different detector affect things?
* How will the detector stand up to radiation damage?

Most detectors only measure voltages, currents, and times
* It's an interpretation to say that such-and-such a particle caused such-and-such a signature in the detector

* We can use simulation to correct our observables and understand our (in)efficiencies

There is only one right answer in nature
 What would new physics look like in our detector?

e Could we find it under realistic conditions?
* What are the biggest problems, and how do we ease them?

A good simulation at you understand your detector
and t are studying

Yulei Zhang | DarkSHINE C++ Programming Tutorial

QUIZ: Write Me a Simulation for This Ae=rsmunl

A Typical DarkSHINE Event

Yulei Zhang | DarkSHINE C++ Programming Tutorial 5

l Simulation Basics mﬂdﬁ L

@® Break the problem up as much as possible

* Do you understand all the steps of the system?

® For each piece of the problem, write some code

* Did you remember all the effects for each step?

®Spend enough time on each piece that you get the accuracy that you need out of them
® Cross your fingers and press the button A

®There are two general approaches for a detector simulation
* Full Simulation: We can simulate every little detail along the way — Geant4 (GEometry ANd Tracking)

e Fast Simulation: We can go straight for the final state — “A pion will look like such-and-such” & Smear
things directly

Yulei Zhang | DarkSHINE C++ Programming Tutorial

l Primer on Simulation

®In Geant4, every problem looks like this:

@1t has the concepts of:
e Particle (if it isn’t standard model, G4 has no idea about it! — Define new particles @)
e Material (you define everything except the elements)
* Magnetic field (you define it at every point)

* Physics process (you get to pick from their list! = Write your own physics @)

It is only a toolbox — it’s up to you to put the pieces together
* Don’t expect it to be any smarter than you are.

* Saying “we do the simulation with Geant4” is like saying “We do the analysis with ROOT.” It’s
true, but it’s not enough to explain anything.

Yulei Zhang | DarkSHINE C++ Programming Tutorial 7

l Simulation Step 1

®Question 1: What am | looking at, and what can it do?

e Simulation is agnostic about the generator; It only cares about final state (stable) particles

 What is “final state” that depends on the experiment

14

AR EEEER] _

e e

t/ba > >
/,’ X
,’, Ay
EBCBB008080 %)
& nuclei

Yulei Zhang | DarkSHINE C++ Programming Tutorial

l Simulation Step 2

®Question 2: How far may | go?

@Never move farther than a volume boundary
— the physics could change!!

@ Check on all physics models. For a pion, this
means multiple scattering, bremsstrahlung,
nuclear interactions, decay, ionization...

@New secondary particles? N
2

@®Adjust energy and momentum accordingly

Yulei Zhang | DarkSHINE C++ Programming Tutorial

l The Magnetic Field

® No hope for simulating on the fly - must have a map

* Do they match reality?
* Do they match the geometry?

0.15(
' 0 0.2 2
0.10 |
<02 B 1 |
0.1 ‘
-04 \
0.05 0 |
-06 |
x 0.00 ~ 0.0 -1 ‘
-08
=
-0.05 -1.0 -0.1 |
-12 -5
-0.10
-14 -0.2 -4 z |
-0.15"] .05
-06 -04 -02 00 02 04 06 @
|

-06 -04 -02 00 02 04 06

Yulei Zhang | DarkSHINE C++ Programming Tutorial

l Numerical Models

@ In reality, particle moves continuously, but numerical models are not!

* All processes become discrete, including “transportation”

®Some interactions are €easy

* Photon conversion (y = e*e ™), Bremsstrahlung

®Some are hard to model

 Photo-nuclear, electro-nuclear

* Good in an energy range; transitions can be problematic.

O 00 O O ©

®Some have a variety of models

Yulei Zhang | DarkSHINE C++ Programming Tutorial

®Use phenomenological models tuned to experimental data

* Never solve a Lagrangian &

m Some Hadronic options:

“QGS” Quark Gluon String model (> ~15 GeV)

“FTF” FRITIOF String model (> ~5 GeV)

“BIC” Binary Cascade model (<~10 GeV)

“BERT” Bertini Cascade model (<~10 GeV)

“P” G4Precompound model used for de-excitation

“HP” High Precision neutron model (< 20 MeV)

m Some EM options:

o No suffix: standard EM i.e. the default G4EmStandardPhysics constructor
o “EMV” G4EmStandardPhysics_optionl CTR: HEP, fast but less precise
o “EMY” G4EmStandardPhysics_option3 CTR: medical, space sci., precise
o “EMZ” G4EmStandardPhysics_option4 CTR: most precise EM physics

11

l New Secondaries

® Each particle is called “Track” (in Geant4)

® If there is an interaction, generate all the secondaries

« EM processes have a “range cut” —e™* /e~ /y that have an average range below that distance are never
created.

* Incorrect setting of this range cut caused a major production problem. (tracking reconstruction problem in
DarkSHINE)

» Secondaries will be pushed back into “Stack” for later simulation

In general, the models of what secondaries are produced in an interaction are well-educated

guesses

Yulei Zhang | DarkSHINE C++ Programming Tutorial

l What Really Happens

®Each iteration is called a “step”

®The number of steps dictates the speed of the simulation

* The best code changes get us ~3 — 10% speed ups; the best physics changes get us 20
— 509% speed ups

* Simulation time goes with energy, so it is very important how far forward you simulate
particles — but you need to be careful to not harm detector response!

®Most time just moving stuff around in the calorimeter

 50% of your simulation time is spent moving e* and y below 10 MeV

Yulei Zhang | DarkSHINE C++ Programming Tutorial 13

I simulation Step 3

®Question 3: Anything else to do?

@The user is allowed a hook at the end of this
“step” to perform any necessary action, for z
example to make a record of energy
deposition

@All particles are tracked to zero energy or their

exit of your world

Yulei Zhang | DarkSHINE C++ Programming Tutorial

l Truth in DarkSHINE

®0Of course, the most interesting interactions in the detector need to be saved to
understand how the reconstruction does

®DarkSHINE combines several approaches to ensure everything that needs to be
saved, is
 |nitial Particle Steps
 MC particles (all the secondary particles produced in one event)
* Simulated Hits (Energy deposition in detectors, without digitization)

e More truth information...

® At the end (in reconstruction) these different records are reconstructed back
together into what ever is required

Yulei Zhang | DarkSHINE C++ Programming Tutorial

l Short Summary on Simulation

Things to be determined through simulation

1. Generating initial particle(s) from particle gun or external
generator

2. Particle will move ahead through the following criteria:

£: Interaction length
* (@:raw cross section

* Transportation + Physics processes: EM process, hadronic process... T:geometry boundary

e Roll a dice to determine which physics process happens —

min({’pl, {’pz, £,.,T)

p3’
* If there are new secondaries generated, push back into stack

* Stop simulating this track until E;, = 0 or exit the world

Choose the next particle in stack, and repeat step 2
4. When the stack is empty, DONE &

p(f) = ge%

Things won’t change
Magnetic Fields
Detector Construction

e Materials

* Geometry
* Electronics (SiPM, PMT...)

Yulei Zhang | DarkSHINE C++ Programming Tutorial

l Truth? Real Data?

Truth

Particle Gun/Generator Real Data

® Particle trajectories (track + step) @® Optical photons in calorimeter

Truth interaction information ®Electrons in Silicon

®Truth energy deposition in detector

Need hardware test to validate/calibrate

Yulei Zhang | DarkSHINE C++ Programming Tutorial 17

l What is Geant4?

®Toolkit for the Monte Carlo simulation of the interaction of particles with matter

* Physics processes (EM, hadronic, optical) cover a comprehensive set of particles, materials and

over a wide energy range
e offers a complete set of support functionalities (tracking, geometry)

* Distributed software production and management: developed by an international

Collaboration

e Established in 1998 m
e Approximately 100 members, from Europe, America and Asia) G EANT i

A SIMULATION TOOLKIT !

® Written in C++ language

* Takes advantage from the Object-Oriented software technology

Yulei Zhang | DarkSHINE C++ Programming Tutorial

() Get started

Everything you need to get started with
Geant4.

I'm ready to start!

3 Download

Geant4 source code and installers are
available for download, with source code
under an open source license.

Latest: 11.2.0

B Docs

Documentation for Geant4, along with
tutorials and guides, are available online.

Read documentation

Collaboration
About us Contribute
Geant4 team and documents
What is Geant4, where it's used, details Learn More How external users can contribute to
on Collaboration. Geant4.
Learn More Learn More
Events » More
114/2024 - 1/19/2024 11th International Geant4 School, University of Pavia, Pavia (Italy)
3/25/2024 - 3/29/2024 Geant4 tutorial at JLAB, Jefferson Lab, Newport News (Virginia, USA)

3/27/2024 - 3/29/2024

Nakanoshima Center, Osaka (Japan)

3/25/2024 - 3/26/2024 Geant4-DNA International tutorial, Osaka University, Osaka (Japan)

The 5th Geant4 International User Conference at the Physics - Medicine - Biology frontier, Osaka University

10/7/2024 - 10/11/2024 29th Geant4 Collaboration Meeting, INFN LNS Laboratories, Catania (ltaly)

Yulei Zhang | DarkSHINE C++ Programming Tutorial

)Website [link]

)Code and documentation

available in the main web
page

)Regular tutorial courses held

worldwide

https://geant4.web.cern.ch/

l Geant4 Versions and Releases

®First release (Geant4 1.0) in December 1998
 ~Two releases per year since then
* Major releases(x.y) or minor releases(x.y) or beta releases

e Patches regularly issued

)Last version: Geant4 11.2
 Released: December 8th, 2023

®Version used in DarkSHINE: Geant4 10.6.3

 This is also the version installed in the docker used for this tutorial

 Require C++17 standard

Yulei Zhang | DarkSHINE C++ Programming Tutorial 20

l Toolkit and User Application

® Geant4 is a toolkit (= a collection of tools)

e you cannot “run” it out of the box

* You must write an application, which uses Geant4 tools

* There are no such concepts as “Geant4 defaults”

* You must provide the necessary information to configure your simulation
* You must deliberately choose which Geant4 tools to use

® What you MUST do:
* Describe your experimental setup (Detectors, magnetic fields...)
* Provide the primary particles input to your simulation

* Decide which particles and physics models you want to use out of those available in Geant4 and the precision of
your simulation (cuts to produce and track secondary particles)

You may also want
* To interact with Geant4 kernel to control your simulation
* To visualize your simulation configuration or results

* To record the simulation results to disk for further analysis

Yulei Zhang | DarkSHINE C++ Programming Tutorial

l Geant4: Multi-Thread Modes

® Geant4 supports multi-thread approach for multi-core machines
e Simulation is automatically split on an event-by-event basis
* Different events are processed by different cores
e Can fully profit of all cores available on modern machines — substantial speed-up of simulations
* Unique copy (master) of geometry and physics: all cores have them as read-only (saves memory)

® Backwards compatible with the sequential mode

Workers

Parallelization with Sequential Mode

Geometry Geometry Geometry

Yulei Zhang | DarkSHINE C++ Programming Tutorial 22

l Interaction with Geant4 kernel

® Geant4 design provides tools for a user application
* To tell the kernel about your simulation configuration
* To interact with Geant4 kernel itself

® Geant4 tools for user interaction are base classes

* You create your own concrete class derived from the base classes — interface to the Geant4 kernel
* Geant4 kernel handles your own derived classes transparently through their base class interface
(polymorphism)

Two types of Geant4 base classes:

® Abstract base classes for user interaction (classes starting with G4V)

* User derived concrete classes are mandatory

e User to implement the purely virtual methods

® Concrete base classes (with virtual dummy default methods) for user interaction

e User derived classes are optional

Yulei Zhang | DarkSHINE C++ Programming Tutorial

l How Geant4 Works — Glossary

Run: a simulation session. It begins with the initialization of the simulation environment and ends with the
accumulation of data. During a run, a specified number of events are simulated.

Event: a single instance of the simulation process in one Run. Each event starts with primary particles (defined
by the user) and tracks their interactions and decays.

@ Track: the representation of a particle. It includes the particle's type, energy, position, momentum, and other
physical properties. Tracks are created for primary particles and for secondary particles generated through
interactions.

Step: a segment of a track. It represents the particle's movement from one point to another and includes any
physical interactions that occur during this movement. Each step is characterized by the particle's state at the
beginning and end of the step, as well as the energy loss and other changes that occur.

Stack: the data structure used to manage the tracks of particles (a to-do list). When a new particle is created
(either a primary particle or a secondary particle from an interaction), it is placed on the stack.

Yulei Zhang | DarkSHINE C++ Programming Tutorial

l User Classes

Initialization classes
Invoked at the initialization

G4VUserDetectorConstruction [How]

® G4VUserPhysicsList [How]

G4VUserActionlnitialization

Global: only one instance of them exists in
memory, shared by all threads (read-only).
Managed only by the master thread.

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Action classes
Invoked during the execution loop
® G4VUserPrimaryGeneratorAction
® G4UserRunAction
G4UserEventAction

G4UserStackingAction

® G4UserTrackingAction

® G4UserSteppingAction

25

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/BackupVersions/V10.6/html/GettingStarted/geometryDef.html
https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/BackupVersions/V10.6/html/GettingStarted/physicsDef.html

l Type 1: The Mandatory User Classes

G4VUserDetectorConstruction: describe the experimental set-up, including the geometry,
material, sensitive detector, magnetic fields.

G4VUserPhysicsList: select the physics you want to activate (normally from the pre-defined
physics list [link])

G4VUserActionlnitialization: takes care of the user action initializations

G4VUserPrimaryGeneratorAction: define the initial particles, from particle gun, general particle
source (GPS), or external file

® Abstract base classes for user interaction (classes starting with G4V)

* User derived concrete classes are mandatory

e User to implement the purely virtual methods

Yulei Zhang | DarkSHINE C++ Programming Tutorial

https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsListGuide/BackupVersions/V10.6/html/physicslistguide.html

l Type 2: Optional User Classes

Five concrete base classes whose virtual member functions the user may override to gain

control of the simulation at various stages

G4UserRunAction: beginning of the run & end of the run
G4UserEventAction: beginning of the event & end of the event
G4UserTrackingAction: beginning of the track & end of the track
G4UserSteppingAction: end of each step of a particle's track

G4UserStackingAction: when a new track has been generated (not covered in this course)

Each member function of the base classes has a dummy implementation (not purely virtual)

Empty implementation: does nothing

Override only the methods that you need

User action classes must be registered to the Run Manager via the G4VUserActionlnizialization

Yulei Zhang | DarkSHINE C++ Programming Tutorial

How to Build a Detector? F

Geant4 Official User Book [link]

/Y\J%“:%ﬂﬁ B

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/BackupVersions/V10.6/html/Detector/Geometry/geometry.html

Units in Geant4

//
=) q // Time [T]
® Don t use defaU|t UnltS! [IIIIII’ IIE’ |i|5 ’] é{atic const double nanosecond

static const double second
static const double millisecond
static const double microsecond

® When specifying dimensions, always multiply by an appropriate unit: static const double picosecond

static const double hertz = 1./second;
static const double kilohertz = 1l.e+3xhertz;
static const double megahertz = 1l.e+6xhertz;

o8
1.e+9 xnanosecond;
1.e-3 xsecond;
1l.e-6 xsecond;
1.e-12xsecond;

NE — * :
G4double \/Ldth m; 1 S
G4double density = * g/cm3; Static const double s = sacondson®’
static const double ms = millisecond;

) 55 Electric charge [Q]
® Most common units are defined in CLHEP library (included in Geant4): £latic const douple eplus

static const double e_SI
static const double coulomb

. 3// positron charge
.602176487e-19;// positron charge in coulomb
eplus/e_SI;// coulomb = 6.24150 e+18 *x eplus

=

. "y : I //
#include "G4SystemOfUnits.hh ;fammy[ﬂ
static const goug{e megae{ectronvo{t = %. ;6 | |
. 1 : " static const double electronvolt = 1l.e-6*megaelectronvolt;
#inlcude "CLHEP/SystemOfUntits.h static const double kiloelectronvolt = 1.e-3kmegaelectronvolt;
static const double gigaelectronvolt = 1.e+3*megaelectronvolt;
static const double teraelectronvolt = 1.e+6*megaelectronvolt;
static const double petaelectronvolt = 1.e+9kmegaelectronvolt;
® Output data in terms of a specific unit (divide a value by the unit): static const double joule = electronvolt/e_SI;// joule = 6.24150 e+12 % MeV
// symbols
static const goug{e MeV = m%gaelectr?nvolt;
<< / << " / " << . static const double eV = electronvolt;
G4cout dE / MeV (MeV) G4endl’ static const double keV = kiloelectronvolt;
static const double GeV = gigaelectronvolt;
static const double TeV = teraelectronvolt;
static const double PeV = petaelectronvolt;

Useful feature: Geant4 can select the most appropriate unit to use:

G4cout << G4BestUnit(StepSize, "Length");

Yulei Zhang | DarkSHINE C++ Programming Tutorial

l Materials in Geant4

® Different levels of material description:

* Isotopes — G4lsotope _ _ _
Using G4lsotope and G4Element to build G4Material

* Elements —» G4Element

* Molecules, compounds and mixtures - G4Material (G4Material is all you need @)

® Attributes associated:

* G4lsotope and G4Element describe properties of the atoms: Atomic number, number of nucleons,

mass of a mole, shell energies, cross-sections per atoms, etc.

e G4Material describes the macroscopic properties of the matter: Temperature, pressure, state,
density, radiation length, absorption length, etc.

® G4Material is used by tracking, geometry and physics

® Materials in Users Guide [link]

Yulei Zhang | DarkSHINE C++ Programming Tutorial 30

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/BackupVersions/V10.6/html/Detector/material.html

Elements and compounds

G4Material (const G4String &name, G4double z, G4double a, G4double density, G4State state=kStateUndefined, G4double temp=CLHEP::STP_Temperature, G4double pressure=CLHEP::STP_Pressure)
G4Material (const G4String &name, G4double density, G4int nComponents, G4State state=kStateUndefined, G4double temp=CLHEP::STP_Temperature, G4double pressure=CLHEP::STP_Pressure)
G4Material (const G4String &name, G4double density, const G4Material *baseMaterial, G4State state=kStateUndefined, G4double temp=CLHEP::STP_Temperature, G4double pressure=CLHEP::STP_Pressure)

® Single-element material:

G4double density = *g/cm3;
G4double a = xg/mole;

G4double z = ;
G4Material* lAr = new G4Material("liquidAr", z, a, density);

® Molecule material (composition by number of atoms):

a = *g/mole;
G4Element* elH = new G4Element("Hydrogen", symbol="H", Zz

*xg/mole;
G4Element* el0 = new G4Element("Oxygen", symbol="0", z=

density = *g/cm3;
G4Material* H20 = new G4Material("Water", density, ncomponents=2);

H20->AddElement(elH, natoms=2);
H20->AddElement(el0, natoms=1);

Yulei Zhang | DarkSHINE C++ Programming Tutorial

l Mixtures

® Composition by fraction of mass:

la-= *xg/mole;
G4Element* elN = new G4Element(name="Nitrogen",symbol="N", z= , a);

4 a = *xg/mole;
G4Element* el0 = new G4Element(name="0xygen",symbol="0", z= , a);

density = *mg/cm3;
G4Material* Air = new G4Material(name="Air", density, ncomponents=2);

Air->AddElement(elN, *perCent);
Air->AddElement(elo, *perCent);

® Composition of mixtures:

G4Element* elC
G4Material* S102 = ..;
G4Material*x H20 = ..;

density = *g/cm3;
G4Material* aerogel = new G4Material("Aerogel", density, ncomponents=3);

aerogel->AddMaterial(S102, fractionmass= *perCent);
aerogel->AddMaterial(H20, fractionmass= *perCent);
aerogel->AddElement (elC, fractionmass= *perCent);

Yulei Zhang | DarkSHINE C++ Programming Tutorial

l NIST material database

® No need to predefine elements and materials

® Retrieve elements and materials from NIST manager:

#include “G4NistManager.hh” Include header file for G4NistManager

G4NistManager* manager = G4NistManager::Instance(); Singleton

G4Material*x H20 = manager->FindOrBuildMaterial("G4_WATER");
G4Material* air = manager->FindOrBuildMaterial("G4_AIR");
G4Material* vacuum = manager->FindOrBuildMaterial("G4_Galactic");
G4Element* Si = manager->FindOrBuildElement("Si");

)

Yulei Zhang | DarkSHINE C++ Programming Tutorial 33

l How to Build a Detector Geometry — Glossary

Solid: a basic shape. It defines the size and shape of an object but doesn’t have any physical properties
like material or color.

Logical Volume: Once you have a solid (your shape), the next step is to define what it is made of and
how it behaves. It’s giving material, properties, hierarchy of volumes, and magnetic field to the shape,
but it's still not a real, physical one.

Physical Volume: Finally, the ‘physical volume’ is like the actual object placed somewhere. It takes the
shape (solid) and the material (logical volume), and places it in the simulation world. This is where you
decide the position and how many copies of the physical volume you want.

Physical Volume:
Solid: size & shape Logical Volume: material & properties actual placement & copies

Yulei Zhang | DarkSHINE C++ Programming Tutorial

l DEfine SOIid : G4double world_sizeXY =

*env_sizeXY;

: G4double world_sizez = *env_sizeZ;
® CSG (Constructed Solid Geometry) solids Geoxs solidiortd =
* G4Box, G4Tubs, G4Cons, G4Trd, ... S arid staexy.,
® Specific solids (CSG like) o orla sizez
* G4Polycone, G4Polyhedra, G4Hype, ...
* GA4TwistedTubs, G4TwistedTrap, ... G4UnionSolid

® BREP (Boundary REPresented) solids
* G4BREPSolidPolycone, G4BSplineSurface, ...

e Any order surface

® Boolean solids e [:

* G4UnionSolid, G4SubtractionSolid, ... G4IntersectianSolid .

Yulei Zhang | DarkSHINE C++ Programming Tutorial

l Define Logical Volume

Contains all information of volume except position:
Shape and dimension (G4VSolid)

Material, Sensitive Detector, visualization attributes

Position of daughter volumes

Magnetic field, User limits

® Physical volumes of same type can share a logical volume.
@® The pointers to solid and material must be not nullptr

G4LogicalVolume(G4VSolid* pSolid,
G4Material* pMaterial,
const G4String& name
G4FieldManager* pFieldMgr=0,
G4VSensitiveDetector* pSDetector=
G4UserLimits*x pULimits=0,
G4bool optimise=);

Optional

Yulei Zhang | DarkSHINE C++ Programming Tutorial

l Define Physical Volume

@ A physical volume is a positioned instance of a logical volume inside another logical volume (the
mother volume)

Never Overlap with other logical volumes

® Repeated: a logical volume placed many times can represent any number of volumes reduces
use of memory

® G4PVReplica (= simple repetition), G4PVParameterised (= more complex pattern), etc.

new G4PVPlacement(0,
G4ThreeVector(),
logicEnyv,
“"Envelope”,
logicWorld,

b

Unique Number 0,

checkOverlaps);

Yulei Zhang | DarkSHINE C++ Programming Tutorial

l Geometry Hierarchy

® A volume is placed in its mother volume
* Position and rotation of the daughter volume is described with respect to the local coordinate system of the
mother volume
* The origin of the mother's local coordinate system is at the center of the mother volume

* Daughter volumes cannot protrude from the mother volume
e Daughter volumes cannot overlap
* The logical volume of mother knows the daughter volumes it contains
® One logical volume can be placed more than once. One or more volumes can be placed in a mother
volume.
® The mother-daughter relationship is an information of G4LogicalVolume. If the mother volume is placed
more than once, all daughters by definition appear in each placed physical volume.
® The world volume must be a unique physical volume which fully contains all other volumes (root volume
of the hierarchy)
® The world volume defines the global coordinate system. The origin of the global coordinate system is at
the center of the world volume.

Yulei Zhang | DarkSHINE C++ Programming Tutorial

How to Access Simulation Data? F

Geant4 Official User Book [link]

/Y\J%“:%ﬂﬁ B

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/BackupVersions/V10.6/html/Detector/hit.html

l What is Sensitive Detector? mﬂdﬁ N

® We know now how to create a detector, but how to record data from detector?
* energy deposition, number of particles, particle trajectories, etc.

® Different methods to extract useful information from simulation:
» Sensitive Detector (usually record information in the detector, energy deposition)
e User Actions (usually record truth MC particles, TrackingAction, SteppingAction)
* Scoring (not covered in this course)

® A SD can be used to simulate the “read-out” of your detector:
* It is a way to declare a geometric element “sensitive” to the passage of particles

* It gives the user a handle to collect quantities from these elements. For example: energy deposited, position,
time information

® Using SD to record hit is better than using User Stepping Action:
e Generally more efficient

* Geant4 only records hits when a particle interacts with the sensitive material, reducing the computational load

Yulei Zhang | DarkSHINE C++ Programming Tutorial

l Sensitive Detector: Tracker & Calorimeter mﬂﬁ

® A tracker detector typically generates a hit for every single step of every single (charged) track.

* A tracker hit typically contains:
* Position and time
* Energy deposition of the step
* Track ID

® A calorimeter detector typically generates a hit for every cell and accumulates energy
deposition in each cell for all steps of all tracks.
* A calorimeter hit typically contains

* Sum of deposited energy

e Cell ID

Yulei Zhang | DarkSHINE C++ Programming Tutorial

l More information on Sensitive Detector mﬂdﬁ

® Each Logical Volume can have a pointer to a sensitive detector.

* Then this volume becomes sensitive.

@ A sensitive detector creates hit(s) using the information given in G4Step object. The user has to
provide his/her own implementation of the detector response.

e UserSteppingAction class should NOT do this.

Hit objects, which are still the user’s class objects, are collected in a G4Event object at the end of

an event.

Yulei Zhang | DarkSHINE C++ Programming Tutorial

How to Define Sensitive Detector? _/jvf\\%JTﬂ

@ Sensitive detector is a user-defined class derived from G4VSensitiveDetector
000

1 #include "G4VSensitiveDetector.hh"
2 #include "Hit.hh”

4 class SensitiveDetector : public G4VSensitiveDetector {
public:
SensitiveDetector(G4String SDname);
~SensitiveDetector();

Call for every particle step in the sensitive volume
G4bool ProcessHits(G4Step *step, G4TouchableHistory *ROhist);
void Initialize(G4HCofThisEvent* HCE); Call at the beginning of each event

void EndOfEvent(G4HCofThisEvent* HCE); Call at the end of each event

Think of your.own way to record Hits

Yulei Zhang | DarkSHINE C++ Programming Tutorial 43

How to build an application F

Geant4 Official Example: B1 [link]
Code on GitHub [link], GitLab [link]

/Y\J%“:%ﬂﬁ B

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/BackupVersions/V10.6/html/Examples/BasicCodes.html
https://github.com/AvencastF/exampleB1
https://gitlab.com/yulei_zhang/exampleB1

l What is Example B1 doing? _e=smn

®This example demonstrates a simple (medical) application within which users will
familiarize themselves with simple placement, use the NIST material database, and
can utilize electromagnetic and/or hadronic physics processes. Two items of

information are collected in this example: the energy deposited and the total dose
for a selected volume.

Yulei Zhang | DarkSHINE C++ Programming Tutorial

39

nt main(int argc,char*x argv)

G4UIExecutive* ui = 0;

Main Program

17 G Elfg =) Detect interactive mode (if no arguments) and define Ul session

uit = new G4UIExecutive(argc, argv);

by

G4RunManager* runManager = new GA4RunManager; G4RunManager: a manager class to control all actions

runManager->SetUserInitialization(new BlDetectorConstruction()); Register Detector Construction

G4VModularPhysicsList* physicsList = new QBBC;

physicsList->SetVerboselLevel(1); Register Physics List, using QBBC (pre-defined)

runManager->SetUserInitialization(physicsList);

runManager->SetUserInitialization(new BlActionInitialization()); Register a|| 0pti0na| user action C|asseS here

G4VisManager* visManager = new G4VisExecutive;
visManager->Initialize();

G4UImanager* UImanager = G4UImanager::GetUIpointer();
if (! ul) {

G4String command = "/control/execute ";
G4String fileName = argv[1l];
UImanager->ApplyCommand(command+fileName);

}

else {

UImanager->ApplyCommand("/control/execute init_vis.mac");
ui->SessionStart();
delete uti;

}

p
delete visManager;
delete runManager;

}L

Initialize visualization

not mandatory, but it’s better to visualize your program and easy to debug
Just copy k4

But remember to copy the init_vis.mac file to your run directory

Job Termination
Free the store: user actions, physics_list and detector_description are owned
and deleted by the run manager, so they should not be deleted in the main()

|
program ! ”

co~NOUL S WN =

=
@ O

11
12
ILE
14
15
16
17
18
19
pA0)
2!
272
23
24

#i1fndef BlDetectorConstruction_h
#define BlDetectorConstruction_h 1

#include "G4VUserDetectorConstruction.hh"
#include "globals.hh"

class G4VPhysicalVolume;
class G4LogicalVolume;

class BlDetectorConstruction : public G4VUserDetectorConstruction

1
public:
BlDetectorConstruction();
virtual ~BlDetectorConstruction();

virtual G4VPhysicalVolume* Construct();

Detector Construction (header file)

Derive your own concrete class from G4VUserDetectorConstruction
abstract base class

Implementing the pure virtual method Construct():
s> * Define shapes/solids required to describe the geometry

G4LogicalVolume* GetScoringVolume() const { return fScoringVolume; } e Construct all necessary materials

protected:
G4LogicalVolumex fScoringVolume;

}

#endif

e Construct and place volumes of your detector geometry

* (Define "sensitivity" properties associated to volumes)

* (Associate magnetic field to detector regions)

* (Define visualization attributes for the detector elements)

BlDetectorConstruction: :BlDetectorConstruction()
: G4VUserDetectorConstruction(), fScoringVolume(0) { }

BlDetectorConstruction: :~BlDetectorConstruction() { }
G4VPhysicalVolume* BlDetectorConstruction::Construct()

{

1
2
3
4
5
6
7
8 G4NistManager* nist =

G4NistManager::Instance();

10 G4double env_sizeXY
11 G4Material* env_mat =

20*cm, env_sizeZ = 30*cm;
nist->FindOrBuildMaterial("G4_WATER");

Detector Construction (source file)

Define 2 shapes

12

13 .

14 G4bool checkOverlaps = true; Deﬂne W0r|d
15

16

17 | G4double world_sizeXY = 1.2*env_sizeXY;

18 G4double world_sizeZ = 1.2*env_sizeZ;

19 G4Material* world_mat = nist->FindOrBuildMaterial("G4_AIR");

20

21 | G4Box* solidWorld = new G4Box("World", 0.5*world_sizeXY, 0.5*world_sizeXY, 0.5*world_sizeZ);
22

23 | G4LogicalVolume* logicWorld = new G4LogicalVolume(solidWorld, world_mat, "World");
24

25 | G4VPhysicalVolume* physWorld =

26 new G4PVPlacement(0,

27 G4ThreeVector(),

28 logicWorld,

29 "World",

30 0,

31 false,

32 0,

33 checkOverlaps);

34

35

36 | G4Box* solidEnv = new G4Box("Envelope", 0.5*%env_sizeXY, 0.5*env_sizeXY, 0.5*env_sizeZ);
37

38 | G4LogicalVolume* logicEnv = new G4LogicalVolume(solidEnv, env_mat, "Envelope");

39

40 | new G4PVPlacement(0,

41 G4ThreeVector(),

42 logicEnv,

43 "Envelope",

44 logicWorld,

45 false,

46 0, 0

47 checkoverlaps) ; Define Envelope
48

49

50 Always return the physical

51 return physWorld; =—————>

52 } volume of the world

Define Scoring (?) Volume

O~NOUTE WN =

(=]

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

€——=5+— fScoringVolume =

G4Material* shapel_mat = nist->FindOrBuildMaterial("G4_A-150_TISSUE");
G4ThreeVector posl = G4ThreeVector(0, 2*cm, -7*cm);

G4double shapel_rmina = 0.*cm, shapel_rmaxa = 2.*cm;
G4double shapel_rminb = 0.*cm, shapel_rmaxb = 4.*cm;
G4double shapel_hz = 3.*cm;

G4double shapel_phimin = 0.*deg, shapel_phimax = 360.%*deg;

G4Cons* solidShapel =
new G4Cons("Shapel",
shapel_rmina, shapel_rmaxa, shapel_rminb, shapel_rmaxb, shapel_hz,
shapel_phimin, shapel_phimax);

G4LogicalVolume* logicShapel =
new G4LogicalVolume(solidShapel,
shapel_mat,
"Shapel");

new G4PVPlacement(0,
posl,
logicShapel,
"Shapel",
logicEnv,
false,
0,
checkOverlaps);

G4Material* shape2_mat = nist->FindOrBuildMaterial("G4_BONE_COMPACT_ICRU");
G4ThreeVector pos2 = G4ThreeVector(0, -1*cm, 7*cm);

G4double shape2_dxa
G4double shape2_dya
G4double shape2_dz
G4Trd* solidShape2 =
new G4Trd("Shape2",
0.5*shape2_dxa, 0.5*shape2_dxb,
0.5*shape2_dya, 0.5*shape2_dyb, 0.5*shape2_dz);

12*cm, shape2_dxb
10*cm, shape2_dyb
6*cm;

12*cm;
16*cm;

G4LogicalVolume* logicShape2 =
new G4LogicalVolume(solidShape2,
shape2_mat,
"Shape2");

new G4PVPlacement(0,
pos2,
logicShape2,
"Shape2",
logicEnv,
false,
0,
checkOverlaps);

logicShape2;

18

#ifndef BlActionInitialization_h
#define BlActionInitialization_h 1

#include "G4VUserActionInitialization.hh"

class BlActionInitialization : public G4VUserActionInitialization

{
public:
BlActionInitialization();
virtual ~BlActionInitialization();

virtual void BuildForMaster() const;
virtual void Build() const;

};

dummy implementation, defined by user if needed
#endif

Action Initialization

1 BlActionInitialization::BlActionInitialization()

2 : G4VUserActionInitialization()

3 {}

4

5

6 BlActionInitialization::~BlActionInitialization()

7 {}

8

9l void BlActionInitialization::BuildForMaster() const
10 {

11] B1RunAction* runAction = new BlRunAction;

12| SetUserAction(runAction);

13] }

14

15| void BlActionInitialization::Build() const

16| {

17] SetUserAction(new BlPrimaryGeneratorAction);

18

19] B1RunAction* runAction = new BlRunAction;

20] SetUserAction(runAction);

21

22] BlEventAction* eventAction = new BlEventAction(runAction);
23 SetUserAction(eventAction);

24

25| SetUserAction(new BlSteppingAction(eventAction));
26| }

Define Primary Generator, Run, Event, Stepping Action

Event Action

1 #1fndef BlEventAction_h 1 #include "BlEventAction.hh"

2 #define BlEventAction_h 1 2 #include "B1lRunAction.hh"

3 3

4 #include "G4UserEventAction.hh" 4 #include "G4Event.hh"

5 #include "globals.hh" 5 #include "G4RunManager.hh"

6 6

7 class BlRunAction; 7 B1lEventAction::BlEventAction(B1RunAction* runAction)
8 8 : G4UserEventAction(),

9 class BlEventAction : public G4UserEventAction 9 fRunAction(runAction),
10 { 10 fEdep(0.)
11 public: 11 {}
12 B1lEventAction(B1lRunAction* runAction); 12
13 virtual ~BlEventAction(); What to do in the beginning/end of the event 13 B1lEventAction: :~BlEventAction()

14 14 {}

15 virtual void BeginOfEventAction(const G4Event* event); 15

16 [;irtual void EndOfEventAction(const G4Event* event);] 16 void BlEventAction::BeginOfEventAction(const G4Eventx)
17 17 {

18 void AddEdep(G4double edep) { fEdep += edep; } 18 fEdep = 0.;

19 19 }
20 private: 20
21 B1RunAction* fRunAction; 21 void BlEventAction::EndOfEventAction(const G4Eventx)
22 G4double fEdep; 22 {
23 }; 23 , sti L
24 24 fRunAction->AddEdep(fEdep);
25 #endif 25 }

26

14
15
16
17
18
19
20
21
22
23
24
25
26

Stepping Action

#1fndef B1lSteppingAction_h
#define B1lSteppingAction_h 1

#include "G4UserSteppingAction.hh"
#include "globals.hh"

class BlEventAction;

class G4LogicalVolume;

class BlSteppingAction : public G4UserSteppingAction

{

public:
B1SteppingAction(BlEventAction* eventAction);
virtual ~B1lSteppingAction();

virtual void UserSteppingAction(const G4Step*);

private:
B1EventAction* fEventAction;
G4LogicalVolume* fScoringVolume;

e

#endif

Make sure we are in the region of interest (Scoring Volume)

Record the energy deposition in this step for this event

1
2
3
4
5
6
7
8

(o)

26

28
PAS
30
31
32

B1lSteppingAction: :B1SteppingAction(BlEventAction* eventAction)
: G4UserSteppingAction(),

fEventAction(eventAction),

fScoringVolume(0)
{}

B1SteppingAction: :~B1SteppingAction()
{}

void BlSteppingAction::UserSteppingAction(const G4Step* step)

{
if (!fScoringVolume) {
const BlDetectorConstruction* detectorConstruction
= static_cast<const BlDetectorConstruction*>
(G4RunManager: :GetRunManager()->GetUserDetectorConstruction());
fScoringVolume = detectorConstruction->GetScoringVolume();

}

G4LogicalVolume* volume
= step->GetPreStepPoint()->GetTouchableHandle()
->GetVolume()->GetLogicalVolume();

if (volume != fScoringVolume) return;

e

G4double edepStep = step->GetTotalEnergyDeposit();
fEventAction->AddEdep(edepStep);

}\

Oo~NOOUL D WNRE

(o)

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
PAS)

#1fndef B1PrimaryGeneratorAction_h
#define B1PrimaryGeneratorAction_h 1

#include "G4VUserPrimaryGeneratorAction.hh"
#include "G4ParticleGun.hh"
#include "globals.hh"

class G4ParticleGun;
class G4Event;
class G4Box;

class BlPrimaryGeneratorAction

{
public:
B1PrimaryGeneratorAction();
virtual ~BlPrimaryGeneratorAction();

virtual void GeneratePrimaries(G4Event*);

Primary Generator Action

Define default initial particle:

1 photon with energy 6 MeV along +z direction

public G4VUserPrimaryGeneratorAction

> Need users to implement

const G4ParticleGunx GetParticleGun() const { return fParticleGun; }

private:
G4ParticleGun* fParticleGun;
G4Box* fEnvelopeBox;

#endif

Make sure the envelope is defined,
and get its boundary

Randomly generate particles
according to the size of envelope

B1PrimaryGeneratorAction: :B1PrimaryGeneratorAction()
: G4VUserPrimaryGeneratorAction(),

fParticleGun(0),
4 fEnvelopeBox(0)
14
G4int n_particle = 1;
fParticleGun = new G4ParticleGun(n_particle);

1 G4ParticleTable* particleTable = G4ParticleTable::GetParticleTable();
1 G4String particleName;

1 G4ParticleDefinition* particle

1 = particleTable->FindParticle(particleName="gamma");

14 fParticleGun->SetParticleDefinition(particle);

1 fParticleGun->SetParticleMomentumDirection(G4ThreeVector(0.,0.,1.));
1 fParticleGun->SetParticleEnergy(6.*MeV);

11}

1

19 B1PrimaryGeneratorAction: :~B1PrimaryGeneratorAction()

20 {

21 delete fParticleGun;

22 }

PE]

24 void BlPrimaryGeneratorAction::GeneratePrimaries(G4Event* anEvent)
25 {

26

27| G4double envSizeXY = 0;

28| G4double envSizeZ = 0;

29

30] if (!fEnvelopeBox)

311 {

32 G4LogicalVolume* envLV

23 = G4LogicalVolumeStore::GetInstance()->GetVolume("Envelope");
34 if (envLV) fEnvelopeBox = dynamic_cast<G4Box*>(envLV->GetSolid());
351 }

36

37 if (fEnvelopeBox) {

38 envSizeXY = fEnvelopeBox->GetXHalflLength()*2.;

39 envSizeZ = fEnvelopeBox->GetZHalfLength()*2.;

401

41] else {

42 G4ExceptionDescription msg;

43 msg << "Envelope volume of box shape not found.\n";

44 msg << "Perhaps you have changed geometry.\n";

45 msg << "The gun will be place at the center.";

46 G4Exception("B1lPrimaryGeneratorAction: :GeneratePrimaries()",
47 "MyCode0002" ,JustWarning,msg);

48] }

49

50 | G4double size = 0.8;

51] G4double x0 = size * envSizeXY * (G4UniformRand()-0.5);

52 G4double y0 = size * envSizeXY * (G4UniformRand()-0.5);

53] G4double z0 = -0.5 * envSizeZ;

54

55| fParticleGun->SetParticlePosition(G4ThreeVector(x0,y0,z0));
56

57 fParticleGun->GeneratePrimaryVertex(anEvent);

58

000 .
Run Action

#ifndef B1lRunAction_h

#define B1RunAction_h 1

1
2
3
4 #include "G4UserRunAction.hh"
5 #include "G4Accumulable.hh"

6 #include "globals.hh"

7

8

class G4Run;

16 class BlRunAction : public G4UserRunAction HOW about the source file'-’
17 { =

18 public:
19 B1RunAction();
20 virtual ~BlRunAction(); What to do in the beginning/end of the run

23 virtual void BeginOfRunAction(const G4Runx);
24 virtual void EndOfRunAction(const G4Run*);
25
26 void AddEdep (G4double edep);
27

28 private:

29 G4Accumulable<G4double> fEdep;
30 G4Accumulable<G4double> fEdep2;
S

32

33 #endif

