
DarkSHINE C++ Programming Tutorial

(Geant4) Simulation and Concepts

Shanghai Jiao Tong University

January 20th, 2023

Yulei Zhang

Yulei Zhang | DarkSHINE C++ Programming Tutorial

What are Monte Carlo (MC) techniques for?

Numerical solution of a (complex) macroscopic problem, by simulating the
microscopic interactions among the components

Applications not only in physics and science, but also finances, traffic flow, social
studies, etc.

In physics, elementary laws are (typically) known → MC is used to predict the
outcome of a (complex) experiment
• Exact calculation from the basic laws is unpractical

• Optimize an experimental setup, support data analysis

Monte Carlo for particle tracking (interaction of radiation with matter)

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Most common application in HEP: particle tracking

Problem: track an electron in a detector and determine the energy spectrum deposited.

All physics is known from textbook (Compton scattering, photoelectric effect, etc.)

However, the analytical calculation is a nightmare (😵) → Monte Carlo simulation clearly wins

3

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Why Simulate Anything?

We can (usually) only build one detector
• What will we miss because of our detector design?
• How would a slightly different detector affect things?
• How will the detector stand up to radiation damage?

Most detectors only measure voltages, currents, and times
• It’s an interpretation to say that such-and-such a particle caused such-and-such a signature in the detector
• We can use simulation to correct our observables and understand our (in)efficiencies

There is only one right answer in nature
• What would new physics look like in our detector?
• Could we find it under realistic conditions?
• What are the biggest problems, and how do we ease them?

4

Yulei Zhang | DarkSHINE C++ Programming Tutorial

QUIZ: Write Me a Simulation for This

5

A Typical DarkSHINE Event

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Simulation Basics

Break the problem up as much as possible
• Do you understand all the steps of the system?

For each piece of the problem, write some code

• Did you remember all the effects for each step?

Spend enough time on each piece that you get the accuracy that you need out of them

Cross your fingers and press the button 🙏

There are two general approaches for a detector simulation
• Full Simulation: We can simulate every little detail along the way → Geant4 (GEometry ANd Tracking)

• Fast Simulation: We can go straight for the final state → “A pion will look like such-and-such” & Smear
things directly

6

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Primer on Simulation

In Geant4, every problem looks like this:

It has the concepts of:
• Particle (if it isn’t standard model, G4 has no idea about it! → Define new particles 🤓)

• Material (you define everything except the elements)

• Magnetic field (you define it at every point)

• Physics process (you get to pick from their list! → Write your own physics 😁)

It is only a toolbox → it’s up to you to put the pieces together
• Don’t expect it to be any smarter than you are.

• Saying “we do the simulation with Geant4” is like saying “We do the analysis with ROOT.” It’s
true, but it’s not enough to explain anything.

7

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Simulation Step 1

Question 1: What am I looking at, and what can it do?
• Simulation is agnostic about the generator; It only cares about final state (stable) particles

• What is “final state” that depends on the experiment

8

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Simulation Step 2

Question 2: How far may I go?

Never move farther than a volume boundary
→ the physics could change!!

Check on all physics models. For a pion, this
means multiple scattering, bremsstrahlung,
nuclear interactions, decay, ionization…

New secondary particles?

Adjust energy and momentum accordingly

9

𝑁! 𝐹𝑒

𝜋"

Yulei Zhang | DarkSHINE C++ Programming Tutorial

The Magnetic Field

No hope for simulating on the fly - must have a map
• Do they match reality?

• Do they match the geometry?

10

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Numerical Models

In reality, particle moves continuously, but numerical models are not!
• All processes become discrete, including “transportation”

Use phenomenological models tuned to experimental data
• Never solve a Lagrangian😎

Some interactions are easy
• Photon conversion (𝛾 → 𝑒!𝑒"), Bremsstrahlung

Some are hard to model
• Photo-nuclear, electro-nuclear

Some have a variety of models
• Good in an energy range; transitions can be problematic.

11

Yulei Zhang | DarkSHINE C++ Programming Tutorial

New Secondaries

Each particle is called “Track” (in Geant4)

If there is an interaction, generate all the secondaries
• EM processes have a “range cut” – 𝑒!/𝑒"/𝛾 that have an average range below that distance are never

created.

• Incorrect setting of this range cut caused a major production problem. (tracking reconstruction problem in
DarkSHINE)

• Secondaries will be pushed back into “Stack” for later simulation

In general, the models of what secondaries are produced in an interaction are well-educated
guesses

12

Yulei Zhang | DarkSHINE C++ Programming Tutorial

What Really Happens

Each iteration is called a “step”

The number of steps dictates the speed of the simulation
• The best code changes get us ~3 − 10% speed ups; the best physics changes get us 20
− 50% speed ups

• Simulation time goes with energy, so it is very important how far forward you simulate
particles – but you need to be careful to not harm detector response!

Most time just moving stuff around in the calorimeter
• 50% of your simulation time is spent moving 𝑒± and 𝛾 below 10 MeV

13

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Simulation Step 3

Question 3: Anything else to do?

The user is allowed a hook at the end of this
“step” to perform any necessary action, for
example to make a record of energy
deposition

All particles are tracked to zero energy or their
exit of your world

14

𝑁! 𝐹𝑒

𝜋"

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Truth in DarkSHINE

Of course, the most interesting interactions in the detector need to be saved to
understand how the reconstruction does

DarkSHINE combines several approaches to ensure everything that needs to be
saved, is
• Initial Particle Steps

• MC particles (all the secondary particles produced in one event)

• Simulated Hits (Energy deposition in detectors, without digitization)

• More truth information…

At the end (in reconstruction) these different records are reconstructed back
together into what ever is required

15

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Short Summary on Simulation

Things won’t change
Magnetic Fields

Detector Construction
• Materials

• Geometry
• Electronics (SiPM, PMT…)

16

Things to be determined through simulation
1. Generating initial particle(s) from particle gun or external

generator

2. Particle will move ahead through the following criteria:
• Transportation + Physics processes: EM process, hadronic process…

• Roll a dice to determine which physics process happens →
min(ℓ#! , ℓ#" , ℓ## , 𝑇)

• If there are new secondaries generated, push back into stack

• Stop simulating this track until 𝐸$ = 0 or exit the world

3. Choose the next particle in stack, and repeat step 2

4. When the stack is empty, DONE 😍

• ℓ: Interaction length
• 𝜎: raw cross section
• 𝑇: geometry boundary
• 𝑝 ℓ = 𝜎𝑒"#ℓ

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Truth? Real Data?

Truth

Particle Gun/Generator

Particle trajectories (track + step)

Truth interaction information

Truth energy deposition in detector

17

Real Data

Optical photons in calorimeter

Electrons in Silicon

Need hardware test to validate/calibrate

Yulei Zhang | DarkSHINE C++ Programming Tutorial

What is Geant4?

Toolkit for the Monte Carlo simulation of the interaction of particles with matter
• Physics processes (EM, hadronic, optical) cover a comprehensive set of particles, materials and

over a wide energy range

• offers a complete set of support functionalities (tracking, geometry)

• Distributed software production and management: developed by an international
Collaboration
• Established in 1998

• Approximately 100 members, from Europe, America and Asia

Written in C++ language
• Takes advantage from the Object-Oriented software technology

18

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Website [link]

Code and documentation
available in the main web
page

Regular tutorial courses held
worldwide

19

https://geant4.web.cern.ch/

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Geant4 Versions and Releases

First release (Geant4 1.0) in December 1998
• ～Two releases per year since then

• Major releases(x.y) or minor releases(x.y) or beta releases

• Patches regularly issued

Last version: Geant4 11.2
• Released: December 8th, 2023

Version used in DarkSHINE: Geant4 10.6.3
• This is also the version installed in the docker used for this tutorial

• Require C++17 standard

20

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Toolkit and User Application
Geant4 is a toolkit (= a collection of tools)
• you cannot “run” it out of the box
• You must write an application, which uses Geant4 tools
• There are no such concepts as “Geant4 defaults”
• You must provide the necessary information to configure your simulation
• You must deliberately choose which Geant4 tools to use

What you MUST do:
• Describe your experimental setup (Detectors, magnetic fields…)
• Provide the primary particles input to your simulation
• Decide which particles and physics models you want to use out of those available in Geant4 and the precision of

your simulation (cuts to produce and track secondary particles)

You may also want
• To interact with Geant4 kernel to control your simulation
• To visualize your simulation configuration or results
• To record the simulation results to disk for further analysis

21

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Geant4: Multi-Thread Modes

Geant4 supports multi-thread approach for multi-core machines
• Simulation is automatically split on an event-by-event basis
• Different events are processed by different cores
• Can fully profit of all cores available on modern machines → substantial speed-up of simulations
• Unique copy (master) of geometry and physics: all cores have them as read-only (saves memory)

Backwards compatible with the sequential mode

22

Multi-Thread Mode

Parallelization with Sequential Mode

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Interaction with Geant4 kernel

Geant4 design provides tools for a user application
• To tell the kernel about your simulation configuration
• To interact with Geant4 kernel itself

Geant4 tools for user interaction are base classes
• You create your own concrete class derived from the base classes → interface to the Geant4 kernel
• Geant4 kernel handles your own derived classes transparently through their base class interface

(polymorphism)

Two types of Geant4 base classes:
Abstract base classes for user interaction (classes starting with G4V)
• User derived concrete classes are mandatory
• User to implement the purely virtual methods

Concrete base classes (with virtual dummy default methods) for user interaction
• User derived classes are optional

23

Yulei Zhang | DarkSHINE C++ Programming Tutorial

How Geant4 Works – Glossary

Run: a simulation session. It begins with the initialization of the simulation environment and ends with the
accumulation of data. During a run, a specified number of events are simulated.

Event: a single instance of the simulation process in one Run. Each event starts with primary particles (defined
by the user) and tracks their interactions and decays.

Track: the representation of a particle. It includes the particle's type, energy, position, momentum, and other
physical properties. Tracks are created for primary particles and for secondary particles generated through
interactions.

Step: a segment of a track. It represents the particle's movement from one point to another and includes any
physical interactions that occur during this movement. Each step is characterized by the particle's state at the
beginning and end of the step, as well as the energy loss and other changes that occur.

Stack: the data structure used to manage the tracks of particles (a to-do list). When a new particle is created
(either a primary particle or a secondary particle from an interaction), it is placed on the stack.

24

Yulei Zhang | DarkSHINE C++ Programming Tutorial

User Classes

Initialization classes

Invoked at the initialization

G4VUserDetectorConstruction [How]

G4VUserPhysicsList [How]

G4VUserActionInitialization

Global: only one instance of them exists in
memory, shared by all threads (read-only).
Managed only by the master thread.

25

Action classes

Invoked during the execution loop

G4VUserPrimaryGeneratorAction

G4UserRunAction

G4UserEventAction

G4UserStackingAction

G4UserTrackingAction

G4UserSteppingAction

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/BackupVersions/V10.6/html/GettingStarted/geometryDef.html
https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/BackupVersions/V10.6/html/GettingStarted/physicsDef.html

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Type 1: The Mandatory User Classes

G4VUserDetectorConstruction: describe the experimental set-up, including the geometry,
material, sensitive detector, magnetic fields.

G4VUserPhysicsList: select the physics you want to activate (normally from the pre-defined
physics list [link])

G4VUserActionInitialization: takes care of the user action initializations

G4VUserPrimaryGeneratorAction: define the initial particles, from particle gun, general particle
source (GPS), or external file

26

Abstract base classes for user interaction (classes starting with G4V)
• User derived concrete classes are mandatory
• User to implement the purely virtual methods

https://geant4-userdoc.web.cern.ch/UsersGuides/PhysicsListGuide/BackupVersions/V10.6/html/physicslistguide.html

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Type 2: Optional User Classes

Five concrete base classes whose virtual member functions the user may override to gain
control of the simulation at various stages

• G4UserRunAction: beginning of the run & end of the run

• G4UserEventAction: beginning of the event & end of the event

• G4UserTrackingAction: beginning of the track & end of the track

• G4UserSteppingAction: end of each step of a particle's track

• G4UserStackingAction: when a new track has been generated (not covered in this course)

Each member function of the base classes has a dummy implementation (not purely virtual)

• Empty implementation: does nothing

• Override only the methods that you need

User action classes must be registered to the Run Manager via the G4VUserActionInizialization

27

How to Build a Detector?

Geant4 Official User Book [link]

28

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/BackupVersions/V10.6/html/Detector/Geometry/geometry.html

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Units in Geant4

Don’t use default units! [mm, ns, MeV]

When specifying dimensions, always multiply by an appropriate unit:

Most common units are defined in CLHEP library (included in Geant4):

Output data in terms of a specific unit (divide a value by the unit):

Useful feature: Geant4 can select the most appropriate unit to use:

29

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Materials in Geant4

Different levels of material description:
• Isotopes → G4Isotope

• Elements → G4Element

• Molecules, compounds and mixtures → G4Material (G4Material is all you need 🙃)

Attributes associated:
• G4Isotope and G4Element describe properties of the atoms: Atomic number, number of nucleons,

mass of a mole, shell energies, cross-sections per atoms, etc.

• G4Material describes the macroscopic properties of the matter: Temperature, pressure, state,
density, radiation length, absorption length, etc.

G4Material is used by tracking, geometry and physics

Materials in Users Guide [link]

30

Using G4Isotope and G4Element to build G4Material

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/BackupVersions/V10.6/html/Detector/material.html

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Elements and compounds

Single-element material:

Molecule material (composition by number of atoms):

31

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Mixtures

Composition by fraction of mass:

Composition of mixtures:

32

Yulei Zhang | DarkSHINE C++ Programming Tutorial

NIST material database

No need to predefine elements and materials

Retrieve elements and materials from NIST manager:

33

Include header file for G4NistManager

Singleton

Yulei Zhang | DarkSHINE C++ Programming Tutorial

How to Build a Detector Geometry – Glossary

34

Solid: a basic shape. It defines the size and shape of an object but doesn’t have any physical properties
like material or color.

Logical Volume: Once you have a solid (your shape), the next step is to define what it is made of and
how it behaves. It’s giving material, properties, hierarchy of volumes, and magnetic field to the shape,
but it's still not a real, physical one.

Physical Volume: Finally, the ‘physical volume’ is like the actual object placed somewhere. It takes the
shape (solid) and the material (logical volume), and places it in the simulation world. This is where you
decide the position and how many copies of the physical volume you want.

Solid: size & shape Logical Volume: material & properties
Physical Volume:

actual placement & copies

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Define Solid

35

CSG (Constructed Solid Geometry) solids
• G4Box, G4Tubs, G4Cons, G4Trd, …

Specific solids (CSG like)
• G4Polycone, G4Polyhedra, G4Hype, …

• G4TwistedTubs, G4TwistedTrap, …

BREP (Boundary REPresented) solids
• G4BREPSolidPolycone, G4BSplineSurface, …

• Any order surface

Boolean solids
• G4UnionSolid, G4SubtractionSolid, …

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Define Logical Volume

Contains all information of volume except position:
• Shape and dimension (G4VSolid)
• Material, Sensitive Detector, visualization attributes
• Position of daughter volumes
• Magnetic field, User limits

Physical volumes of same type can share a logical volume.

The pointers to solid and material must be not nullptr

36

Optional

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Define Physical Volume

A physical volume is a positioned instance of a logical volume inside another logical volume (the
mother volume)

Never Overlap with other logical volumes

Repeated: a logical volume placed many times can represent any number of volumes reduces
use of memory

G4PVReplica (= simple repetition), G4PVParameterised (= more complex pattern), etc.

37

Unique Number

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Geometry Hierarchy

A volume is placed in its mother volume
• Position and rotation of the daughter volume is described with respect to the local coordinate system of the

mother volume
• The origin of the mother's local coordinate system is at the center of the mother volume
• Daughter volumes cannot protrude from the mother volume
• Daughter volumes cannot overlap
• The logical volume of mother knows the daughter volumes it contains

One logical volume can be placed more than once. One or more volumes can be placed in a mother
volume.
The mother-daughter relationship is an information of G4LogicalVolume. If the mother volume is placed
more than once, all daughters by definition appear in each placed physical volume.
The world volume must be a unique physical volume which fully contains all other volumes (root volume
of the hierarchy)
The world volume defines the global coordinate system. The origin of the global coordinate system is at
the center of the world volume.

38

How to Access Simulation Data?

Geant4 Official User Book [link]

39

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/BackupVersions/V10.6/html/Detector/hit.html

Yulei Zhang | DarkSHINE C++ Programming Tutorial

What is Sensitive Detector?

We know now how to create a detector, but how to record data from detector?
• energy deposition, number of particles, particle trajectories, etc.

Different methods to extract useful information from simulation:
• Sensitive Detector (usually record information in the detector, energy deposition)

• User Actions (usually record truth MC particles, TrackingAction, SteppingAction)
• Scoring (not covered in this course)

A SD can be used to simulate the “read-out” of your detector:
• It is a way to declare a geometric element “sensitive” to the passage of particles

• It gives the user a handle to collect quantities from these elements. For example: energy deposited, position,
time information

Using SD to record hit is better than using User Stepping Action:
• Generally more efficient

• Geant4 only records hits when a particle interacts with the sensitive material, reducing the computational load

Yulei Zhang | DarkSHINE C++ Programming Tutorial

Sensitive Detector: Tracker & Calorimeter

A tracker detector typically generates a hit for every single step of every single (charged) track.
• A tracker hit typically contains:

• Position and time

• Energy deposition of the step

• Track ID

A calorimeter detector typically generates a hit for every cell and accumulates energy
deposition in each cell for all steps of all tracks.
• A calorimeter hit typically contains

• Sum of deposited energy

• Cell ID

41

Yulei Zhang | DarkSHINE C++ Programming Tutorial

More information on Sensitive Detector

Each Logical Volume can have a pointer to a sensitive detector.
• Then this volume becomes sensitive.

A sensitive detector creates hit(s) using the information given in G4Step object. The user has to
provide his/her own implementation of the detector response.
• UserSteppingAction class should NOT do this.

Hit objects, which are still the user’s class objects, are collected in a G4Event object at the end of
an event.

42

Yulei Zhang | DarkSHINE C++ Programming Tutorial

How to Define Sensitive Detector?

Sensitive detector is a user-defined class derived from G4VSensitiveDetector

43

Call for every particle step in the sensitive volume

Call at the beginning of each event

Call at the end of each event

Think of your own way to record Hits

How to build an application

Geant4 Official Example: B1 [link]

Code on GitHub [link], GitLab [link]

44

https://geant4-userdoc.web.cern.ch/UsersGuides/ForApplicationDeveloper/BackupVersions/V10.6/html/Examples/BasicCodes.html
https://github.com/AvencastF/exampleB1
https://gitlab.com/yulei_zhang/exampleB1

Yulei Zhang | DarkSHINE C++ Programming Tutorial

What is Example B1 doing?

This example demonstrates a simple (medical) application within which users will
familiarize themselves with simple placement, use the NIST material database, and
can utilize electromagnetic and/or hadronic physics processes. Two items of
information are collected in this example: the energy deposited and the total dose
for a selected volume.

46

Detect interactive mode (if no arguments) and define UI session

G4RunManager: a manager class to control all actions

Register Detector Construction

Register Physics List, using QBBC (pre-defined)

Register all optional user action classes here

Initialize visualization
not mandatory, but it’s better to visualize your program and easy to debug
Just copy 😝
But remember to copy the init_vis.mac file to your run directory

Job Termination
Free the store: user actions, physics_list and detector_description are owned
and deleted by the run manager, so they should not be deleted in the main()
program !

Main Program

Detector Construction (header file)

Derive your own concrete class from G4VUserDetectorConstruction
abstract base class

Implementing the pure virtual method Construct():
• Define shapes/solids required to describe the geometry
• Construct all necessary materials
• Construct and place volumes of your detector geometry
• (Define "sensitivity" properties associated to volumes)
• (Associate magnetic field to detector regions)
• (Define visualization attributes for the detector elements)

Detector Construction (source file)

Define World

Define Envelope

Define 2 shapes

Define Scoring (?) Volume
Always return the physical
volume of the world

Action Initialization

dummy implementation, defined by user if needed

Define Primary Generator, Run, Event, Stepping Action

What to do in the beginning/end of the event

Event Action

Stepping Action

Make sure we are in the region of interest (Scoring Volume)

Record the energy deposition in this step for this event

Primary Generator Action

Define default initial particle:
• 1 photon with energy 6 MeV along +z direction

Make sure the envelope is defined,
and get its boundary

Randomly generate particles
according to the size of envelope

Need users to implement

What to do in the beginning/end of the run

Run Action

How about the source file?

