Shuzhe Shi(施舒哲), Tsinghua University

Reverse engineering the TOV equation:

see also:

Zhou, Wang, Pang, *SS* Prog.Part.Nucl.Phys*.*104084(2023). Soma, Wang, *SS*, Stoecker, Zhou, JCAP08 (2022) 071; Phys. Rev. D **107**, 083028

analytical results and applications in deep learning

2024-04-01, *workshop on Dense Matter EoS and Frontiers in NS Physics* (TDLI)

work in progress, w/ Sophia Han, Kai Zhou, Ronghao Li, Zidu Lin, Lingxiao Wang, + …

*r*² − 2 *m r*

$$
\frac{dP}{dr} = -\frac{(m + 4\pi r^3)}{r^2 - 2r^2}
$$

$$
\frac{dm}{dr} = 4\pi r^2 \varepsilon,
$$

$$
\varepsilon = \varepsilon(P),
$$

,

 P) $(P + \varepsilon)$

Tolman-Oppenheimer-Volkov equations:

Neutron Star: EoS <=> mass-radius relation 1/8

unsupervised learning 2/8

Neural Network EoS + Neural Network TOV Solver

Generalized Bayesian Inference with DNN+AD:

Model independent NN EoS - trainable network

two neural networks:

- 1. represents EoS
- 2. approximates TOV solver

JCAP98(2022)071; Phys.Rev.D107(2023)083028

Recall: Universal approximation theorem, 1989, 1991

Kai Zhou's talk on Mar. 28

unsupervised learning 2/8

Neural Network EoS + Neural Network TOV Solver

Generalized Bayesian Inference with DNN+AD:

Kai Zhou's talk on Mar. 28

Model independent NN EoS - trainable network

2. approximates TOV solver \leftarrow reverse engineering w/ auto differentiation

 $P_{\theta}(\rho)$

NS crust: DD2, inner: $P\theta(1.1\rho_{\text{sat}} \le \rho)$

two neural networks: piecewise (nonlinear) interpolation \rightarrow general, unbiased

- represents EoS
-

Kai Zhou's talk on Mar. 28

unsupervised learning

Mock Test without noise

JCAP98(2022)071; Phys.Rev.D107(2023)083028

reverse engineering w/ auto differentiation

JCAP98(2022)071; Phys.Rev.D107(2023)083028

Kai Zhou's talk on Mar. 28

unsupervised learning

Mock Test without noise

reverse engineering w/ auto differentiation

output: *M-R* curve

output: *M-R* curve

auto differentiation: *^δ* (*M-R*)

δ (EoS)

output: *M-R* curve

auto differentiation: *^δ* (*M-R*)

δ (EoS)

TOV solver network

input: EoS

output: *M-R* curve

auto differentiation: *^δ* (*M-R*)

δ (EoS)

What is behind the "magic"?

auto differentiation: *^δ* (*M-R*)

δ (EoS)

mathematics behind the "magic" 5/8

$$
\frac{dP}{dr} = -\frac{(m + m)^2}{2m}
$$

$$
\frac{dm}{dr} = 4\pi r^2 \varepsilon,
$$

$$
\varepsilon = \varepsilon(P),
$$

auto differentiation: *^δ* (*M-R*)

δ (EoS)

$$
\frac{dP}{dr} = -\frac{(m + m)^2}{2m}
$$

$$
\frac{dm}{dr} = 4\pi r^2 \varepsilon,
$$

$$
\varepsilon = \varepsilon(P),
$$

mathematics behind the "magic" 5/8

"manual" differentiation: linear response analysis of the TOV equation

$$
\frac{dP}{dr} = -\frac{d}{dr}
$$

$$
\frac{dm}{dr} = 4\pi
$$

$$
\varepsilon = \varepsilon(l)
$$

mathematics behind the "magic" 5/8

"manual" differentiation: linear response analysis of the TOV equation

"manual" differentiation: linear response analysis of the TOV equation

$\varepsilon(P) \rightarrow \varepsilon(P) + \delta \varepsilon \, \delta(P - P')$ $R \rightarrow R + \delta R$, $M \rightarrow M + \delta M$

mathematics behind the "magic"

mathematics behind the "magic"

"manual" differentiation: linear response analysis of the TOV equation

$\delta R(P_c)$ *δε*(*P*′) $\delta M(P_c)$ *δε*(*P*′) *and obtained by solving*

differential equations together with TOV.

see Eq. (5.18) of Prog.Part.Nucl.Phys.104084(2023).

 $\varepsilon(P) \rightarrow \varepsilon(P) + \delta \varepsilon \, \delta(P - P')$ $R \rightarrow R + \delta R$, $M \rightarrow M + \delta M$

mathematics behind the "magic"

"manual" differentiation: linear response analysis of the TOV equation

$\delta R(P_c)$ *δε*(*P*′) $\delta M(P_c)$ *δε*(*P*′) *and obtained by solving differential equations together with TOV. see Eq. (5.18) of Prog.Part.Nucl.Phys.104084(2023).*

- Applicable to any parameterization of EoS;
- Used DNN in our work.

i

 $\overline{\mathcal{L}}$

 $\overline{\Delta m_i}$

closure test: with phase transition 6/8

closure test: with phase transition 6/8

EOS reconstruction from NS + physics constraints

summary and outlook 8/8

- Derived *analytical* differential equations for linear responses of the TOV equation
	- tested using NN-EoS;
	- applicable to *tidal deformability* observables;
	- suitable for any parameterization of the EoS;
	- similar idea applicable to other physics topics

extension: Schroedinger equation

reference: *SS*, Zhou, Zhao, Mukherjee, Zhuang, PhysRevD.105.014017

extension: spectral function <=> correlation

SS, Wang, Zhou, Comput.Phys.Commun. 282 (2023) 108547; Wang, *SS*, Zhou, Phys. Rev. D **106**, L051502;

What are Deep Neural Networks? --- a general parameterization scheme to approximate continuous functions. example: approximate $y = x^2$ for $x \in [0,1]$

 $\boldsymbol{\mathcal{X}}$

What are Deep Neural Networks? --- a general parameterization scheme to approximate continuous functions. example: approximate $y = x^2$ for $x \in [0,1]$

 $\boldsymbol{\mathcal{X}}$

What are Deep Neural Networks?

 $\boldsymbol{\mathcal{X}}$

What are Deep Neural Networks? example: approximate $y = x^2$ for $x \in [0,1]$

--- a general parameterization scheme to approximate continuous functions.

What are Deep Neural Networks? --- a general parameterization scheme to approximate continuous functions.

06

- At the first layer:
- At later layers:

z(*l*)

i

j

What are Deep Neural Networks? --- a general parameterization scheme to approximate continuous functions.

$V(r) \approx V_{\text{DNN}}(r)$ parameters)

Each \bigcirc is an intermediate function $(a_i^{(l)})$:

z(1)

i

06

- At the first layer:
- At later layers:

What are Deep Neural Networks? --- a general parameterization scheme to approximate continuous functions.

