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- Bayesian analysis; 

- supervised deep learning; 

- unsupervised DL;



two neural networks: 
1. represents EoS  
2. approximates TOV solver

Kai Zhou’s  
talk on Mar. 28
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Kai Zhou’s  
talk on Mar. 28

reverse engineering w/ auto differentiation

2/8unsupervised learning

two neural networks: 
1. represents EoS  
2. approximates TOV solver

piecewise (nonlinear) interpolation  general, unbiased→
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mock test passed!

3/8

Kai Zhou’s  
talk on Mar. 28

unsupervised learning

reverse engineering w/ auto differentiation



4/8What is behind the “magic”?



input: 
EoS

output: 
M-R curve

4/8What is behind the “magic”?

dP
dr

= −
(m + 4πr3P)(P + ε)

r2 − 2 m r
,

dm
dr

= 4πr2ε ,

ε = ε(P) ,



TOV solver network

input: 
EoS

output: 
M-R curve

4/8What is behind the “magic”?



TOV solver network

input: 
EoS

output: 
M-R curve

auto differentiation:  (M-R)δ
 (EoS)δ

4/8What is behind the “magic”?



TOV solver network

input: 
EoS

output: 
M-R curve

auto differentiation:  (M-R)δ
 (EoS)δ

(M-R)desired - (M-R)curr.

4/8What is behind the “magic”?



TOV solver network

input: 
EoS

output: 
M-R curve

auto differentiation:  (M-R)δ
 (EoS)δ

What is behind the “magic”?

(M-R)desired - (M-R)curr.change in EoS

4/8



auto differentiation:  (M-R)δ
 (EoS)δ

(M-R)desired - (M-R)curr.

dP
dr

= −
(m + 4πr3P)(P + ε)

r2 − 2 m r
,

dm
dr

= 4πr2ε ,

ε = ε(P) ,

change in EoS

5/8mathematics behind the “magic”



auto differentiation:  (M-R)δ
 (EoS)δ

(M-R)desired - (M-R)curr.

dP
dr

= −
(m + 4πr3P)(P + ε)

r2 − 2 m r
,

dm
dr

= 4πr2ε ,

ε = ε(P) ,

“manual” differentiation: 
linear response analysis 
of the TOV equation

change in EoS

5/8mathematics behind the “magic”



dP
dr

= −
(m + 4πr3P)(P + ε)

r2 − 2 m r
,

dm
dr

= 4πr2ε ,

ε = ε(P) ,

“manual” differentiation: 
linear response analysis 
of the TOV equation

Pc = ∫
R

0

(m + 4πr3P)(P + ε)
r2 − 2 m r

dr ,

M = 4π∫
R

0
r2 ε dr ,

radius

mass

central  
pressure

5/8mathematics behind the “magic”



“manual” differentiation: 
linear response analysis 
of the TOV equation

ε(P) → ε(P) + δε δ(P − P′￼)

R → R + δR, M → M + δM
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mathematics behind the “magic”
“manual” differentiation: 
linear response analysis 
of the TOV equation

ε(P) → ε(P) + δε δ(P − P′￼)

R → R + δR, M → M + δM

δR(Pc)
δε(P′￼)

δM(Pc)
δε(P′￼)and obtained by solving

differential equations together with TOV.

see Eq. (5.18) of Prog.Part.Nucl.Phys.104084(2023).
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mathematics behind the “magic”
“manual” differentiation: 
linear response analysis 
of the TOV equation
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δε(P′￼)and obtained by solving

differential equations together with TOV.

see Eq. (5.18) of Prog.Part.Nucl.Phys.104084(2023).
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- Applicable to any parameterization of EoS; 

- Used DNN in our work.
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reconstruct EOS at region  
~ central pressures



Black: ground truth 
Red: DNN recons.

[unknown at training]

closure test: with phase transition 6/8



Black: ground truth 
Red: DNN recons.

[unknown at training]

able to capture first-order 
phase transition

6/8closure test: with phase transition
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NS+chEFT+pQCD

EOS reconstruction from NS + physics constraints
preliminary!
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• Derived analytical differential equations for linear responses of the TOV 
equation


• tested using NN-EoS;


• applicable to tidal deformability observables;


• suitable for any parameterization of the EoS;


• similar idea applicable to other physics topics


summary and outlook 8/8



Ĥ ψn = −
∇2

2m
ψn + V(r) ψn = En ψn

 known ⟹ : 

numerical methods established.
V(r) {En, ψn(r)}

 known ⟹ {En} V(r)

V(r)
{En}

information of interest observations

extension: Schroedinger equation

reference: SS, Zhou, Zhao, Mukherjee, Zhuang, PhysRevD.105.014017



D(p) = ∫
∞

0
K(p, ω) ρ(ω) dω K(p, ω) ≡

π−1 ω
ω2 + p2

information of interest observations

extension: spectral function <=> correlation

SS, Wang, Zhou, Comput.Phys.Commun. 282 (2023) 108547;

   Wang, SS, Zhou, Phys. Rev. D 106, L051502;
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What are Deep Neural Networks?
--- a general parameterization scheme to approximate continuous functions.

example: approximate  for  y = x2 x ∈ [0,1]
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What are Deep Neural Networks?
--- a general parameterization scheme to approximate continuous functions.

example: approximate  for  y = x2 x ∈ [0,1]

defineσ(0.5x) + σ(x − 0.5)
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: intercept

: change of slope

∑
i

σ(si(x − xi))

xi

si

x y

each      represents one of  σ(si(x − xi))
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What are Deep Neural Networks?

Each      is an intermediate function :


- At the first layer:

(a(l)

i )

linear
nonlinear

(iterative function substitution)
V (r) ≈ VDNN(r |parameters)

z(1)
i = b(1)

i + W(1)
i,1 r, a(1)

i = σ(z(1)
i )

--- a general parameterization scheme to approximate continuous functions.
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