2024-04-01, workshop on Dense Matter EoS and Frontiers in NS Physics (TDLI)

Reverse engineering the TOV equation:

analytical results and applications in deep learning

Shuzhe Shi(施舒哲), Tsinghua University

work in progress, w/ Sophia Han, Kai Zhou, Ronghao Li, Zidu Lin, Lingxiao Wang, + ...

see also:

Zhou, Wang, Pang, **SS** Soma, Wang, SS, Stoecker, Zhou, Prog.Part.Nucl.Phys.104084(2023). JCAP08 (2022) 071; Phys. Rev. D 107, 083028

Neutron Star: EoS <=> mass-radius relation

$$\frac{\mathrm{d}P}{\mathrm{d}r} = \frac{(m+1)^2}{\frac{\mathrm{d}m}{\mathrm{d}r}}$$
$$\frac{\mathrm{d}m}{\mathrm{d}r} = 4\pi r^2 \varepsilon,$$
$$\varepsilon = \varepsilon(P),$$

Tolman-Oppenheimer-Volkov equations:

 $\frac{(+4\pi r^3 P)(P+\varepsilon)}{r^2 - 2mr},$

Neural Network EoS + Neural Network TOV Solver

Generalized Bayesian Inference with DNN+AD:

two neural networks:

- 1. represents EoS
- 2. approximates TOV solver

Neural Network EoS + Neural Network TOV Solver

Generalized Bayesian Inference with DNN+AD:

JCAP98(2022)071; Phys.Rev.D107(2023)083028

two neural networks: piecewise (nonlinear) interpolation \rightarrow general, unbiased

- represents EoS

Mock Test without noise

JCAP98(2022)071; Phys.Rev.D107(2023)083028

Kai Zhou's talk on Mar. 28

reverse engineering w/ auto differentiation

Mock Test without noise

JCAP98(2022)071; Phys.Rev.D107(2023)083028

Kai Zhou's talk on Mar. 28

reverse engineering w/ auto differentiation

input: EoS

output: *M-R* curve

auto differentiation:

output: M-R curve

auto differentiation:

output: M-R curve

TOV solver network

input: EoS

auto differentiation:

output: M-R curve

$$\frac{dP}{dr} = \frac{q}{dr}$$
$$\frac{dm}{dr} = 4\pi t$$
$$\varepsilon = \varepsilon(t)$$

auto differentiation:

"manual" differentiation: linear response analysis of the TOV equation

auto differentiation:

"manual" differentiation: linear response analysis of the TOV equation

$$\frac{dP}{dr} = -\frac{(r)}{r}$$
$$\frac{dm}{dr} = 4\pi r$$
$$\varepsilon = \varepsilon(R)$$

"manual" differentiation: linear response analysis of the TOV equation

$\varepsilon(P) \to \varepsilon(P) + \delta \varepsilon \, \delta(P - P')$ $R \to R + \delta R, \ M \to M + \delta M$

"manual" differentiation: linear response analysis of the TOV equation

$\frac{\delta R(P_c)}{\delta \varepsilon(P')} \text{ and } \frac{\delta M(P_c)}{\delta \varepsilon(P')} \text{ obtained by solving}$

differential equations together with TOV.

see Eq. (5.18) of Prog.Part.Nucl.Phys.104084(2023).

 $\varepsilon(P) \to \varepsilon(P) + \delta \varepsilon \, \delta(P - P')$ $R \to R + \delta R, \ M \to M + \delta M$

"manual" differentiation: linear response analysis of the TOV equation

- Applicable to any parameterization of EoS;
- Used DNN in our work.

$\frac{\delta R(P_c)}{\delta \varepsilon(P')} \text{ and } \frac{\delta M(P_c)}{\delta \varepsilon(P')} \text{ obtained by solving}$ differential equations together with TOV. see Eq. (5.18) of Prog.Part.Nucl.Phys.104084(2023).

 $10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^{1} 10^{2} 10^{3}$

 $P [MeV/fm^3]$

closure test: with phase transition

closure test: with phase transition

EOS reconstruction from NS + physics constraints

summary and outlook

- Derived analytical differential equations for linear responses of the TOV equation
 - tested using NN-EoS;
 - applicable to *tidal deformability* observables;
 - suitable for any parameterization of the EoS;
 - similar idea applicable to other physics topics

extension: Schroedinger equation

reference: **SS**, Zhou, Zhao, Mukherjee, Zhuang, PhysRevD.105.014017

extension: spectral function <=> correlation

SS, Wang, Zhou, Comput.Phys.Commun. 282 (2023) 108547; Wang, **SS**, Zhou, Phys. Rev. D **106**, L051502;

What are Deep Neural Networks? --- a general parameterization scheme to approximate continuous functions. example: approximate $y = x^2$ for $x \in [0,1]$

 ${\mathcal X}$

What are Deep Neural Networks? example: approximate $y = x^2$ for $x \in [0,1]$

 ${\mathcal X}$

--- a general parameterization scheme to approximate continuous functions.

What are Deep Neural Networks?

 ${\mathcal X}$

What are Deep Neural Networks? example: approximate $y = x^2$ for $x \in [0,1]$

--- a general parameterization scheme to approximate continuous functions.

What are Deep Neural Networks? --- a general parameterization scheme to approximate continuous functions.

- At the first layer:

06

What are Deep Neural Networks? --- a general parameterization scheme to approximate continuous functions.

$V(r) \approx V_{\text{DNN}}(r | \text{parameters})$

Each \bigcirc is an intermediate function $(a_i^{(l)})$:

- At the first layer:
- At later layers:

06

What are Deep Neural Networks? --- a general parameterization scheme to approximate continuous functions.

- At later layers:

