الاسم. Dealer Issuer	The 4th Asian-European-Institutes Workshop for BSM, 2024		
Gemini dark matter Yu-Cheng QIU			
Introduction Model	Gemini dark matter Yu-Cheng QIU		
Production Dark radiation Summary and Discussion			
	委改道研究所 TSUNG-DAO LEE INSTITUTE		
	Oct 8, 2024		

2407.01099 (PRD accepted) with Andrew Cheek, Liang Tan

Gemini darl matter

Yu-Cheng QIU

Introduction

Model

Production

Dark radiatio

Summary and Discussion

I. Introduction

うせん 正則 スポットポット (日)

الله المعنى المحمد المحم المحمد المحم المحمد المحمد

Gemini dar matter

Yu-Cheng QIU

Introduction

Model

Productio

Dark radiatio

Summary and Discussion

Figure: Copyright: ESA.

- Hubble Tension
- Cosmic Birefringence
- S_8/σ_8 Tension
 - less dark matter
 - decaying dark matter

The second second back matter and S_8/σ_8

Gemini dark matter

Yu-Cheng QIU

Introduction

Model

Production

Dark radiation

Summary and Discussion

- $CDM \rightarrow WDM + \cdots$
- The kinetic energy

$$\epsilon \equiv \frac{1}{2} \frac{m_{\rm CDM}^2 - m_{\rm WDM^2}}{m_{\rm CDM}^2}$$

• The lifetime of CDM, τ .

Available parameter space: $\epsilon \sim \mathcal{O}(0.01) - \mathcal{O}(0.1)$ $au_8 \sim \mathcal{O}(10^{18}) \, \mathrm{s}$

Standard Model and mysteries

Yu-Cheng QIU

Introduction

Model

Productio

Dark radiatio

Summary and Discussion

Figure: Artwork by Sandbox Studio, Chicago.

- Strong CP problem
- Naturalness problem
- Yukawa hierarchy (Why Yukawa couplings are hierarchical?)
 - Landscape (statistical)
 - Clockwork
 - Flavon

④ 李政道研究所

Froggatt-Nielsen mechanism

Yu-Cheng QIU

Introduction

Take charged lepton for example, $m_{\tau} \gg m_{\mu} \gg m_{e}$. FN mechanism considers a chiral $U(1)_{FN}$. (Froggat and Nielsen (1979)) $U(1)_{\rm F}$ charge:

$$n_{ar{\ell}_{\mathsf{L}}} = (1, 0.5, 0) \;, \quad n_{\mathsf{e}_{\mathsf{R}}} = (4, 1, 0) \;, \quad n_{\Phi} = -1 \;, \quad n_{H} = 0 \;.$$

Yukawa operator ' $\ell H e$ ' is not allowed, only

$$-\mathcal{L} \supset g_{ij} \left(rac{\Phi}{\Lambda}
ight)^{n_{ij}} ar{\ell}^{i}_{
m L} \mathcal{H} e^{j}_{
m R} \;, \quad n_{ij} = n^{i}_{ar{\ell}_{
m L}} + n^{j}_{e_{
m R}} \;, \quad g_{ij} \sim \mathcal{O}(1) \;.$$

 Φ SSB : $\langle \Phi \rangle / \Lambda \equiv \lambda < 1$ and $y_{ij} \equiv g_{ij}\lambda^{n_{ij}} \sim \begin{pmatrix} \lambda^5 & \lambda^2 & \lambda \\ \lambda^{4.5} & \lambda^{1.2} & \lambda^{0.5} \\ \lambda^4 & \lambda & 1 \end{pmatrix} \implies m_{\tau} \gg m_{\mu} \gg m_{e}$

④ 全球 4 年 Flavon and Decaying DM

Gemini dark matter

Yu-Cheng QIU

Introduction

Model

Production

Dark radiatio

Summary and Discussion DDM that resolves S₈ requires ε ~ O(0.01) and τ₈ ~ O(10¹⁸) s:
(i) DM visible decay is constrained by Indirect detection;
(ii) Almost degenerate spectrum is rare (without supersymmetry).

● 生は4年まず Flavon and Decaying DM

Gemini dark matter

Yu-Cheng QIU

Introduction

Model

Production

Dark radiation

Summary and Discussion

- FN mechanism predicts flavon, Φ . It couples with fermions: $g_{\Psi} \Phi \bar{\Psi} \Psi$, $g_{\Psi} \sim \mathcal{O}(m_{\Psi}/\Lambda)$. Φ couples to flavor-changing-currents. Suppressed decay channel!
- FN mass matrices are almost rank 1. Degenerate spectrum can be produced!

● 生は4年まず Flavon and Decaying DM

Gemini dark matter

Yu-Cheng QIU

Introduction

Model

Production

Dark radiation

Summary and Discussion

- FN mechanism predicts flavon, Φ . It couples with fermions: $g_{\Psi} \Phi \overline{\Psi} \Psi$, $g_{\Psi} \sim \mathcal{O}(m_{\Psi}/\Lambda)$. Φ couples to flavor-changing-currents. Suppressed decay channel!
- FN mass matrices are almost rank 1. Degenerate spectrum can be produced!

Gemini darl matter

Yu-Cheng QIU

Introductio

Model

Production

Dark radiatio

Summary and Discussion

II. Gemini dark matter model

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▼ ● ◆

Yu-Cheng QIU

Model

Gemini dark matter model

Dark sector lagrangian with chiral $U(1)_{FN}$:

$$\mathcal{L} = i\bar{\chi}_j \bar{\sigma}^{\mu} \partial_{\mu} \chi_j - \frac{\beta_{jk}}{2} \frac{\Phi^{n_j + n_k}}{\Lambda^{n_j + n_k - 1}} \chi_j \chi_k + \text{h.c.}$$

U(1)_{FN} charge: χ_j(n_j) and Φ(-1).
 Φ SSB : Φ = (⟨Φ⟩ + φ) e^{ia/f_a} and {φ, a} are flavons.

$$\left(\frac{\Phi}{\Lambda}\right)^n = \lambda^n e^{in\frac{a}{f_a}} \left(1 + n\frac{\phi}{f_a} + \cdots\right)$$

- Perform phase rotation $\chi_j
 ightarrow e^{-in_j a/f_a} \chi_j$ to adjust the field space coordinates.
- The lagrangian becomes

$$\mathcal{L} = -\bar{\chi}_j \bar{\sigma}^\mu \partial_\mu \chi_j - rac{1}{2} m_k \chi_k \chi_k - g^\phi_{jk} \phi \chi_j \chi_k - g^a_{jk} a \chi_j \chi_k + ext{h.c.}$$

.

Gemini dark matter model

Gemini dark matter Yu-Cheng QIU

Introductio

Mode

Production

Dark radiatior

Summary and Discussion The mismatch between mass- and interaction-eigenstate gives the off-diagonal interactions between flavon and fermions.

$$\mathcal{L} = -\bar{\chi}_j \bar{\sigma}^\mu \partial_\mu \chi_j - rac{1}{2} m_k \chi_k \chi_k - g^\phi_{jk} \phi \chi_j \chi_k - g^a_{jk} a \chi_j \chi_k + \mathrm{h.c.}$$

 $D = \operatorname{diag}(m_1, m_2, \cdots) = U^{\top} M U$ $g^{\phi} = \frac{1}{2} \operatorname{sym} \left(U^{\top} \frac{1}{f_a} \frac{\partial(\lambda M)}{\partial \lambda} U \right)$ Parametrize couplings as $g^{a} = \operatorname{sym} \left(\frac{ND}{f_a} \right)$ $g^{\phi}_{jk} = \frac{1}{f_a} (m_j - m_k + m_j \delta_{jk}) \mathcal{A}_{jk}$ $M_{jk} = \frac{1}{\sqrt{2}} f_a \beta_{jk} \lambda^{n_j + n_k - 1}$ $g^{a}_{jk} = \frac{1}{f_a} (m_j - m_k + m_j \delta_{jk}) \mathcal{B}_{jk}$ $N_{jk} = (U^{\dagger})_{ji} n_i U_{ik}$

 $[\operatorname{sym}(\cdots)]_{jk} = (\cdots)_{jk} + (\cdots)_{kj} - (\cdots)_{jj}\delta_{jk}$

<ロト < 回 > < 臣 > < 臣 > 王 = つへで 11/23

Esco, Date Issuer

Gemini dark matter model

- Gemini dark matter
- Yu-Cheng QIU
- Introductior
- Mode
- Production
- Dark radiation
- Summary and Discussion

- In the limit of $\beta_{jk} \rightarrow 1$, rank(M) = 1.
 - \implies To have a (nearly) degenerate spectrum, one needs at least 3 generations.
- Gemini dark matter: $\{\chi_1,\chi_2,\chi_3\}$, with $m_1 \lesssim m_2 \ll m_3$.

Take for example, $n_1 = 4.5 + n_3$, $n_2 = 2.5 + n_3$, and $\beta = \begin{pmatrix} 1 & 1 & 1 + c \\ 1 & 1 & 1 \\ 1 + c & 1 & 1 \end{pmatrix}$.

12 / 23

The benchmark model parameters

Yu-Cheng QIU

Introductior

Mode

Production

Dark radiatio

Summary and Discussion

 $\chi_{1/2}$ are light enough to be stable. So they are DM. m_a is from explicit breaking of $U(1)_{\rm FN}$. We choose $m_a = 10^{-6} \, {\rm eV}$ to avoid overproduction from misalignment. ϕ is associated with SSB scale, which is heavy. Take $m_{\phi} = 10^9 \, {\rm GeV}$. So kinematically,

$$\chi_2 \to \chi_1 + a$$
, $\chi_3 \to \chi_{1/2} + a$, $\phi \to \chi_j + \chi_k$

The benchmark model parameters

Gemini dark matter

Yu-Cheng QIU

Introduction

Mode

Production

Dark radiatio

Summary and Discussion

m₁ and m₂ are linked by ε ≃ 0.05.
 m_{1/2} and f_a are linked by τ₈ ~ O(10¹⁸) s:

$$m_{1/2} pprox 37 imes \left(rac{f_a^2}{ au_8}
ight)^{1/3}$$

We call χ_1 and χ_2 the twins and χ_3 as the mother particle. Free parameters are $\{f_a, m_3\}$.

Three stages

Gemini dark matter

Yu-Cheng QIU

- Introductio
- Model
- Production
- Dark radiation
- Summary and Discussion

- The Gemini DM production has three stages:
 - $T \gtrsim m_{\phi}$, ϕ stays in the thermal bath;
 - 2 χ_3 freeze in from ϕ decay, $\phi \rightarrow \chi_3 + \chi_3$;

$$Y_3^{\mathrm{f.i.}}pprox 0.3 imesrac{T_0^3M_{\mathrm{Pl}}}{s_0m_\phi}rac{m_3^2}{f_a^2}$$

 $\label{eq:constraint} {\rm {\small 0}} \ \chi_{1/2} \ {\rm production} \ {\rm from} \ \chi_3 \ {\rm decay}, \ \chi_3 \rightarrow \chi_{1/2} + {\it a}. \ {\rm So} \ {\it Y}_1 + {\it Y}_2 \approx {\it Y}_3^{{\rm f.i.}},$

$$\Omega_{\rm DM} h^2 = \frac{(\rho_1 + \rho_2)h^2}{3M_{\rm Pl}^2 H_0^2} \approx \frac{m_{1/2} Y_3^{\rm f.i.} s_0 h^2}{3M_{\rm Pl}^2 H_0^2} \approx 4 \times \frac{h^2 T_0^3 m_3^2}{H_0^2 M_{\rm Pl} m_\phi (\tau_8 f_a^4)^{1/3}}$$

Due to the (almost) degeneracy, χ_1 and χ_2 are produce together with almost same amount. Thus the name 'Gemini'.

Production

Gemini darl matter

Yu-Cheng QIU

Introduction

Model

Production

Dark radiation

Summary and Discussion To have the correct DM relic abundance,

$$\Omega_{
m DM} h^2 pprox 0.12 imes \left(rac{m_3}{1.1 imes 10^4 \, {
m GeV}}
ight)^2 \left(rac{f_a}{2 imes 10^{10} \, {
m GeV}}
ight)^{-4/3}$$

Where we have take $\tau_8 = 10 \,\text{Gyr}$ and $H_0/h = 2.1 \times 10^{-42} \,\text{GeV}$.

Warm or cold?

Gemini dark matter

Yu-Cheng QIU

Introduction

Model

Production

Dark radiation

Summary and Discussion For $f_a = 10^{11} \,\text{GeV}$, $m_{1/2} \simeq 10 \,\text{keV}$. (Is it warm?)

・ロト・西ト・ヨト・ヨー うらぐ

· 李古道好先开 Ist son Dealer Issuere

Warm or cold?

Gemini dark matter

Yu-Cheng QIU

Introduction

Model

Production

Dark radiation

Summary and Discussion

For $f_a = 10^{11} \text{ GeV}$, $m_{1/2} \simeq 10 \text{ keV}$. (Is it warm?) Suppose the instantaneous decay of $\chi_3 \rightarrow \chi_{1/2} + a$, happens at

$$T_3\simeq 10^{-3} imes rac{\sqrt{m_3^3 M_{
m Pl}}}{f_a}$$
 .

The twins $\chi_{1/2}$ obtain the average momentum $\langle p \rangle_3 \approx m_3/2$, which is redshifted to today. The free-streaming scale of the Gemini DM is

$$\lambda_{
m fs}pprox rac{\langle v
angle_0}{H_0}pprox rac{\langle p
angle_0}{H_0m_{1/2}}\simeq 4.1 imes 10^{-3}\,{
m Mpc}/h$$
 .

Clearly, $\lambda_{\rm fs} \ll {\cal O}(1)\,{\rm Mpc}/h$, the scale of Ly-lpha constraint. It is cold.

· 李达道研究所 Isona Dualitie Issuirate

Dark radiation

Gemini dark matter

Yu-Cheng QIU

Introductio

Model

Production

Dark radiation

Summary and Discussion a is light enough to be relativistic. So they contribute to $\Delta N_{\rm eff}.$

$$\Delta N_{\rm eff} = \frac{8}{7} \left(\frac{11}{4} \right)^{4/3} \left. \frac{\rho_a^{\rm th} + \Delta \rho_a}{\rho_\gamma} \right|_{\rm rec}$$

There are two possible production channels of such radiation:

- () thermal freeze out, $\rho_a^{\rm th} \implies \Delta N_{\rm eff} \ge 0.028;$
- 2 parturition process $\chi_3 \rightarrow \chi_{1/2} + a$, $\Delta \rho_a$.

SM prediction $(N_{\rm eff})_{\rm SM} \approx 3.044$. Planck collaboration gives $(N_{\rm eff})_{\rm P18} = 2.88^{+0.44}_{-0.42}$.

$$\Delta N_{
m eff} = (N_{
m eff})_{
m P18} - (N_{
m eff})_{
m SM} \leq 0.276$$

・ロ・・母・・ヨ・・ヨー もんぐ

الله المنظمة Dark radiation prediction

Yu-Cheng QIU

Introductio Model

Production

Dark radiation

Summary and Discussion

Figure: Benchmark model: $m_a = 10^{-6} \text{ eV}$, $m_{\phi} = 10^9 \text{ GeV}$ and $\epsilon = 0.05$. is the range where $\Delta N_{\text{eff}} > 0.276$ and is where $\Delta N_{\text{eff}} > 0.04$. The sensitivity of future CMB-S4 could reach $\Delta N_{\text{eff}} \sim 0.02$. indicates where radiation from $\phi \rightarrow a + a$ cannot be thermalized.

Gemini darl matter

Yu-Cheng QIU

Introductio

Model

Production

Dark radiation

Summary and Discussion

III. Summary and discussion

うして 正明 スポッスポッス セッ

الله المنظمة Summary and discussion المنظمة المنطقة المنطق

Gemini dark matter

Yu-Cheng QIU

Introduction

Model

Production

Dark radiation

Summary and Discussion

- We propose the Gemini dark matter model to explain the S_8/σ_8 tension.
 - The dark matter couple to the flavon that explains the Yukawa hierarchy.
 - Flavon provides the decay channel for S_8/σ_8 and DM production channel.
- The cry of the twins during parturition (dark radiation) is predicted and can be probed in the future CMB-S4.

Discussion

Yu-Cheng QIU

- Introductior
- Model
- Production
- Dark radiation
- Summary and Discussion

- Gemini DM could be the sterile neutrino.
- Light flavon indicates fifth force.
- Extremely light flavon(a) can be used to explain the cosmic birefringence.

Gemini darl matter

Yu-Cheng QIU

Introductio

Model

Production

Dark radiation

Summary and Discussion

Thank you!

Gemini dark matter

Yu-Cheng QIU

Consider $n_1 = 4.5 + n_3$, $n_2 = 2.5 + n_3$ and $\beta = \begin{pmatrix} 1 & 1 & 1 + c \\ 1 & 1 & 1 \\ 1 + c & 1 & 1 \end{pmatrix}$.

Only c will affect the mixing patterns. Parametrize the coupling as

$$egin{aligned} g_{jk}^{\phi} &= rac{1}{f_a} \left(m_j - m_k + m_j \delta_{jk}
ight) \mathcal{A}_{jk} \ g_{jk}^a &= rac{1}{f_a} \left(m_j - m_k + m_j \delta_{jk}
ight) \mathcal{B}_{jk} \;. \end{aligned}$$

(ij)	$ \mathcal{A}_{ij} ^2$	$ \mathcal{B}_{ij} ^2$
(11)	$6.64^{+0.49}_{-0.47}\times10^3$	$48.6\substack{+0.4\\-0.4}$
(22)	$6.76^{+0.48}_{-0.48} imes 10^3$	$49.4\substack{+0.3\\-0.4}$
(33)	$1.57 \times 10^3 \pm 10^{-3}$	12.3 ± 10^{-5}
(21)	$1.37 \times 10^2 \pm 10^{-1}$	$0.999\substack{+0.001\\-0.002}$
(31)	$5.77^{+0.95}_{-0.88} \times 10^{-2}$	$4.21^{+0.70}_{-0.65}\times10^{-4}$
(32)	$6.79^{+1.11}_{-0.99}\times10^{-2}$	$4.98^{+0.79}_{-0.75}\times10^{-4}$

Statistics of matrix elements $|\mathcal{A}_{ij}|^2$ and $|\mathcal{B}_{ij}|^2$ with $\epsilon \in (0.01, 0.1)$, and randomly sampled *c* under uniform distribution. Central values are averages. The upper and the lower uncertainties indicate the maximum and the minimum.

· 李达道研究所 BUNG Durthe Issure

ϕ, a in thermal

Gemini dark matter

Yu-Cheng QIU

 ϕ coupled to SM in the form $\lambda^n \frac{\phi}{f_{\rm a}} \bar{Q} \mathcal{H} q$, which leads to

$$\phi + \mathcal{H}
ightarrow ar{Q} + oldsymbol{q} \;, \quad \phi + oldsymbol{Q}
ightarrow \mathcal{H} + oldsymbol{q} \;, \quad \phi + oldsymbol{q}
ightarrow \mathcal{H} + oldsymbol{Q} \;.$$

The amplitudes are $|\mathcal{M}|^2 = \frac{\lambda^2}{f_a^2}(2p_Q p_q)$. (take n = 1 for leading contribution) The Boltzmann equation for ϕ is

$$\dot{n}_{\phi} + 3Hn_{\phi} = -\tilde{\Gamma}_{\phi} \left(n_{\phi} - n_{\phi}^{eq}
ight)$$

 $\tilde{\Gamma}_{\phi} = \langle \sigma_{\mathcal{H}} v
angle n_{\mathcal{H}}^{eq} + \langle \sigma_{Q} v
angle n_{Q}^{eq} + \langle \sigma_{q} v
angle n_{q}^{eq}$

Decoupling temperatures are

$$3H(T_{dec}^a) = \tilde{\Gamma}_a(T_{dec}^a) , \quad 3H(T_{dec}^{\phi}) = \tilde{\Gamma}_{\phi}(T_{dec}^{\phi})$$

ϕ , *a* in thermal

Take $\{\mathcal{H}, Q, q\}$ massless.

Gemini dark matter

● 李达道研究所

Yu-Cheng QIU

$$\begin{split} \tilde{\Gamma}_{\phi} &= \langle \sigma_{\mathcal{H}} v \rangle n_{\mathcal{H}}^{\text{eq}} + \langle \sigma_{Q} v \rangle n_{Q}^{\text{eq}} + \langle \sigma_{q} v \rangle n_{q}^{\text{eq}} \\ &\approx \frac{1}{n_{\phi}^{\text{eq}}} \int \prod_{j} \frac{g_{j} d^{3} p_{j}}{(2\pi)^{3} (2E_{j})} \frac{\lambda^{2}}{f_{a}^{2}} \left(2p_{Q} p_{q} + 2p_{\mathcal{H}} p_{q} + 2p_{Q} p_{\mathcal{H}} \right) \\ &\times (2\pi)^{4} \delta^{4} (p_{\phi} + p_{\mathcal{H}} - p_{Q} - p_{q}) e^{-(E_{\phi} + E_{\mathcal{H}})/T} \\ &= \frac{g_{\mathcal{H}} g_{Q} g_{q} \lambda^{2}}{16 (2\pi)^{3}} \frac{T^{5}}{f_{a}^{2} m_{\phi}^{2}} \frac{\mathcal{I}(m_{\phi}/T)}{K_{2}(m_{\phi}/T)} \\ \mathcal{I}(\zeta) &= \int_{\zeta}^{\infty} d\xi (\xi^{2} - \zeta^{2}) (2\xi^{2} - \zeta^{2}) K_{1}(\xi) \end{split}$$

The interaction rate for *a* is obtained by taking massless limit of $\tilde{\Gamma}_{\phi}$,

$$\tilde{\Gamma}_{a} pprox rac{g_{\mathcal{H}} g_{Q} g_{q} \lambda^{2}}{(2\pi)^{3}} rac{T^{3}}{f_{a}^{2}} \; .$$

<ロト < 団ト < 臣ト < 臣ト 美国王 のへで 3/4

Figure: Here $f_a = 2 \times 10^{11} \text{ GeV}$ and $m_{\phi} = 10^9 \text{ GeV}$. So $T^a_{\text{dec}} \approx 5 \times 10^4 \text{ GeV}$.