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e dVarious candidates, and one of the most attractive candidate is the thermal DM.
Def: Experienced equilibrium with SM particles in the early universe.

\Viotivation: e Free from the initial condition problem of the DM density today.
® Detectable based on the interaction dependable on maintaining equilibrium.
e DM density today can be from the freeze-out mechanism.
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e Motivation

o \V/IMP has been intensively searched for due to the "'WIMP miracle” and the connection
to the EWSB (susy, UED, Little Higgs), however not found.

® Different mass region, light and heavy thermal DMs, are getting more attention.
® [he light thermal DM may solve the core-cusp problem.

e Model

e DM should be singlet under SM gauge group. (°." Relic abundance)
e Minimal model (SM + scalar DM: Higgs portal) was already excluded.

e Next minimal model is SM + DM + mediator.

e MED should be singlet (*." Collider) and myrp ~ Mpp- (*.° Relic abundance)

We consider SM + light singlet DM + light singlet MED models. 2/19



Constraint on (ov) from CMB

e DM annihilations into primordial plasma may modify the anisotropy of the CMB, which is

not observed, resulting in (ov) < 107*/cm?/s (my,,,/GeV) @ recommbination

—26

e < relic abundance: (6v) ~ 10~ °°cm’/s @ freeze-out.

® Secveral mechanisms can be utilized to overcome this. 1o=

| Slatyer Phys. Rev.D, 93(2):023527, 2016//
1077 |- -

e Different proceses (Co-annihilation, SIMP, ADM....) % |52

® Non-standard cosmology (late-time inflation)
® \/elocity-dependent annihilation

® Annihilations into harmless particles (neutrino) 10 J 1 1 1 1 1
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e \We found neutrinophilic parameter region in models with U(1)5_; vector mediator.

As an example, we consider SM + singlet scalar DM +
U(1l)z_; vector mediator model. 3/12



SM + Scalar DM + U(1);_; mediator model

® Gausing U(1)i_; needs the right-handed neutrinos, N to cancel the anomaly.
e We also consider the scalar DM, @ and U(1)i_; breaking scalar, S.
o After EWSB, U(1)g_; boson mixes with U(1)y boson.
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EFT @ MeV scale

® After diagonalizing the mass matrix, the following interactions are obtained.

e SM-MED:
o Lepton:|gg_; 7, Z'v, |+ (g —£g0S Oy) £ Z' £
o PION: (g5, = Eg-c0s>Ty) €47 (aﬂno){ (0,A)Z,+(9,7) A(,}
e Nucleon: —(gu_ =£g-c05* 0y) pZp —|gp_1 AZ'n|

® DM-MED:

<>

~iq, 812" (9%0,0) + (4,851 Z" Z, |9 1" = 4, /4@’
e When gp_; =~ £g’cos” By, DM interacts only with v and n.
e .". Experimental constraints are weak.

We investigate if dparameter sets survinving from present constraints. 5/12



Benchmark point

® \\e consider the following benchmark point as an example.

o We assume 2mpy S myep = 2mpy(1+va/8) to solve the core-cusp problem.
DM annihilates into vv via MED In s-channel, and at vpyy = Vg, the annihilation
hitts the resonance.
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We investigate If this parameter set survives from present experiments and
observations, and solves the core-cusp problem. 6/12



Constraints from cosmology

o CMB
e Constraint on {(ov): Alleviated *." Neutrinophilic
e Constraint on mpy: asymmetrical entropy injection into EM-plasma and v alters expansion
rate of universe. my,, = 5 MeV
e BBN
e Constraint on {ov): Photons emitted by DM annihilations may destroy the light elements.
Alleviated . Neutrinophilic
e Constraint on mpy,: Light thermal particle affects T},(y) and the expansion rate, then light

element abundances. 11y, = 2 MeV
® | eptogenesis
e Since mypp~10 MeV and gg_; ~1e-10, U(1)g_; breaking scale ~ 1e8 GeV. .". Sufficient
baryon asymmetry can be produced.

Benchmark point survives from cosmological constraints and can explain
baryon asymmetry. 712



Relic abundance

e Boltzmann eq: z[f] = éa[f] + és[f] is numerically hard.

e Standard simplification is assuming Kinetic equilibrium and using Oth moment 7y, .
—n+3Hn=— <ov> (n* — nezq)

® |n the resonant case, annihilations are enhanced, however scattering are not.
S A py F 1oy (Early kinetic decoupling)

e \We consider 1st moment TDM with DRAKE code (tBibder.. Eur. Phys. J. C, 81:577, 2021)
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Benchmark point predict Q 4° = 0.119 ~ QST h* =0.12 8/15



Self-Scattering

e Core-Cusp problem --- mismatch of DM density profiles at the GC
porefered by simulation(cusp) and observation(core).

e Self-scattering of DM may solve this by thermalizing DM at the GC.

— Our model prediction
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Benchmark point can solve core-cusp problem.
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Detection of DM DM DM
e 13 types of DM-SM interaction, and Jappropriate searching 5 5 5
strategy for each. 5 8 o

Direct detection (Observation of DM-SM scatterings '
at underground laboratories) SM - SM

Direct detection

e [raditional experiments (Xenon, etc.) lose the sensitivity for the

ight DM, as the recolil energy is small then falls below the
detector threshold.

® Several strategy are being considered to overcome this:

detector with low threshold, Migdal effect, eleetron scattering.
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e Benchmark point: Only interacts with n. The scattering is 5
suppressed compared to the annihilation. — o, ~ 107! cm? 3‘313:22
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Accelerator (Production of DM by high energy SM particles collisions)

o I\/I:D does not interact with e, p and 7’ Y.
". No strong constraints.

Indirect detection (Observation of SM particles produced by DM annihilations in the unlverse)

10719

e DM can produce v. 1077}
e The annihilation is enhanced *." vg ~ Voo 1pal
to explain the core-cusp problem. gm_m;/ osi
® [he benchmark point remains viable A
because the constraint is weaker i
compared to the y-ray constraints. 10721
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The benchmark point survives from all of the present experiments and observations,

and solves the core-cusp problem thanks to the neutrinophlic nature. 1119



Summary

e Light Thermal DM iIs getting more and more attention.

® There are stringent constraints different from traditional WIMP, and the neutrinophilic DM
offers an eftective way to overcome them. We identitied this region in the gaused U(1)g_;
model, and explored SM + singlet scalar DM and U(1);_; vector mediator model as an
example.

e \Ve confirmed the existence of the parameter set solving the core-cusp problem,
explaining the relic density via freeze-out mechanism and surviving from all of the current
experiments and observation, taking a benchmark point.
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Is g,_; ~ £g’cos” Oy, fine-tuning?

e Our model is indistinguishable from the U(1)g_ 4.y extension of SM.
e Our model can be regarded as one example of U(1)g_1 ..y
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