

Neutrino Oscillation Analysis with New Event Samples at T2K

Thursday, 14 November 2024 16:00 (15 minutes)

Neutral current π^0 (NC π^0) events are a major background for ν_e signal events in T2K neutrino oscillation measurements. These events, characterised by two photons from π^0 decay, can mimic the detector response of electrons in Super-Kamiokande (Super-K). Previously, there were no dedicated samples to effectively constrain this NC π^0 background. To address this, events reconstructed with two Cherenkov rings (the 2-ring π^0 sample) have been selected, improving the modeling of NC π^0 interaction cross-sections. In addition, events reconstructed as single-ring, which were previously rejected from the 1-ring e-like selection, are now included (referred to as the 1-ring π^0 sample). This adjustment recovers a portion of the ν_e signal events that were previously misidentified and rejected during selection.

The inclusion of these NC π^0 samples offers a model-independent constraint on NC π^0 backgrounds directly from Super-K data and increases the total ν_e ($\bar{\nu}_e$) signal events by 7% (11%) at T2K. Since NC interactions are flavor-independent, these samples provide a large event sample to serve as a cross-check of the total neutrino flux at Super-K, in comparison with the unoscillated flux measured near the neutrino beam production point. Furthermore, NC π^0 samples offer unique advantages for sterile neutrino searches. A deficit in charged-current (CC) events without a corresponding deficit in NC events would be a strong signature of sterile neutrino oscillations.

Primary author: ZHU, Tailin (TDLI)

Presenter: ZHU, Tailin (TDLI)

Session Classification: Multi-messenger probes