

Superconducting Radio Frequency Cavity Searches for Dark Photon

Thursday, 14 November 2024 16:45 (30 minutes)

Dark photons have emerged as promising candidates for dark matter, and their search is a top priority in particle physics, astrophysics, and cosmology. We report the first use of a tunable niobium superconducting radio-frequency cavity for a scan search of dark photon dark matter with innovative data analysis techniques. We mechanically adjusted the resonant frequency of a cavity submerged in liquid helium at a temperature of 2 K, and scanned the dark photon mass over a frequency range of 1.37 MHz centered at 1.3 GHz. Our study leveraged the superconducting radio-frequency cavity's remarkably high quality factors of approximately 1010, resulting in the most stringent constraints to date on a substantial portion of the exclusion parameter space on the kinetic mixing coefficient ϵ between dark photons and electromagnetic photons, yielding a value of $\epsilon < 2.2 \times 10^{-16}$.

Presenter: SHU, JING (PKU)

Session Classification: Multi-messenger probes