New perspective of QCD cosmology with Beyond the Standard Model

Shinya Matsuzaki (Jilin U.)

Related collaborators:

Hiroyuki Ishida (Toyama prefectural U.) Mamiya Kawaguchi (Anhui U. of Science and Technology) Akio Tomiya (Tokyo Woman's Christian U.) Yuanyuan Wang (JLU) Hexu Zhang (GUCAS)

Yuepeng Guan (JLU); Linlin Huang (JLU); Jie Liu (JLU) Bin Wang (JLU); Jimin Wang (JLU); Xinru Wang (JLU)

THE 2024 CHENGDU SYMPOSIUM ON PARTICLE PHYSICS AND COSMOLOGY

CPCS 2024

Phase Transitions Dark Matter Experimental Probes

> 27-30 Sept 2024 电子科技大学UESTC http://infice-ldisjicedccs/seed/2004/

PARTICLE AND NUCLEAR | FEATURE

Discovering the Higgs boson: a day in physics like no other

The big day Fabiola Gianotti (foreground, wearing red top) leads the applause in the packed CERN auditorium on 4 July 2012. (Courtesy: CERN)

PARTICLE AND NUCLEAR | FEATURE

Discovering the Higgs boson: a day in physics like no other

The big day Fabiola Gianotti (foreground, wearing red top) leads the applause in the packed CERN auditorium on 4 July 2012. (Courtesy: CERN)

But.....

No clear BSM signal seen yet, though... (2012.... already 12 years ago....) --- 2012 should NOT be the end of particle physics!

still lots of stuff left needed, theoretically or phenomenologically, to account for :

--- 2012 should NOT be the end of particle physics!

still lots of stuff left needed, theoretically or phenomenologically, to account for :

e.g. Calls for BSM due:

---- BAU ---- dark matter ---- neutrino mass ---- dark energy ---- inflation (flatness, homogeneity) ---- stochastic GW bkgd,

```
and (theor. unsatisfactory)
```

etc.

---- strong CP ---- dynamical origin of mass, Higgs mass, EW vacuum stability

Contrast to High energy frontier: scales sub TeV down to O(100 MeV) – O(sub GeV)

potentially able to address necessary BSM pieces

e.g. Calls for BSM due:

BAU, dark matter, neutrino mass, dark energy, inflation (flatness, homogeneity), stochastic GW

and

strong CP, dynamical origin of mass (Higgs mass), EW vacuum stability

etc.

makes conventional QCD thermal history

makes conventional QCD thermal history

New one w/ BSM

Preheating: dynamical and nonadiabatic time evolution of the vacuum

[L. Kofman, A. D. Linde and A. A. Starobinsky, Phys. Rev. Lett. 73 (1994), Phys. Rev. D 56 (1997)]

Preheating: dynamical and nonadiabatic time evolution of the vacuum

[L. Kofman, A. D. Linde and A. A. Starobinsky, Phys. Rev. Lett. 73 (1994), Phys. Rev. D 56 (1997)]

• The universe is slightly reheated;

> LSM with the light quarks $q = (u, d)^T$ monitoring the lowenergy chiral dynamics in QCD:

$$\mathcal{L}_{\text{LSM}} = \text{tr} \left[\partial_{\mu} M^{\dagger} \partial^{\mu} M\right] - V + \bar{N} i \gamma^{\mu} \partial_{\mu} N - \frac{2m_N}{f_{\pi}} \left(\bar{N}_L M N_R + \bar{N}_R M^{\dagger} N_L\right) , V = m_{\pi}^2 f_{\pi} \text{tr} \left[\text{Re}(M)\right] + m^2 \text{tr} \left[M^{\dagger} M\right] + \lambda \left(\text{tr} \left[M^{\dagger} M\right]\right)^2$$

where $M \sim \bar{q}_R q_L$ is parameterized as $M = \sigma \cdot 1_{2 \times 2}/2 + i\pi^a \tau^a/2$ with the Pauli matrices τ^a (a = 1, 2, 3) and the nucleon-doublet field $N_{L,R} = (p, n)_{L,R}^T$.

> The VEV $\langle \sigma \rangle$ is treated as the order parameter of the chiral symmetry breaking and monitors the dynamic $\langle \overline{q}q \rangle$.

> Take into account a higher dimensional interaction

(just come from QCD of SM, w/o. BSM):

$$\mathcal{L}_{\mu_{\rm dyn}} = -\frac{c}{(4\pi f_{\pi})^2} \cdot \partial_{\mu} \mathrm{tr}[M^{\dagger}M] J_B^{\mu}$$

where $J^{\mu}_B = ar{N} \gamma^{\mu} N$

w/ homogeneity in space:

Analogous, but **more evident** than others in a similar context:

spontaneous baryogenesis/leptogenesis via Higgs relaxation or axion inflation

Kusenko:2014uta,Ibe:2015nfa,Daido:2015gqa,Takahashi:2015waa, Adshead:2015jza,Takahashi:2015ula,Kusenko:2016vcq,Maleknejad:2016dci, DeSimone:2016ofp,DeSimone:2016juo,Son:2018avk,Dasgupta:2018eha, Bae:2018mlv,Domcke:2019qmm,Wu:2020pej,Berbig:2023uzs

$$\mathcal{L}_{\mu_{\rm dyn}} = -\mu_{\rm dyn}(t) \cdot n_B(t) ,$$

$$\mu_{\rm dyn}(t) \equiv \frac{c}{(4\pi f_\pi)^2} \partial_0 \text{tr}[M(t)^{\dagger} M(t)] = \frac{c}{32\pi^2 f_\pi^2} \frac{d}{dt} \langle \sigma^2(t) \rangle$$

$$n_B(t) = N^{\dagger}(t) N(t)$$

> Nonzero dynamic $\mu_{dyn}(t)$ "locally" breaks the *C* and *CP* symmetries as well as *T* symmetry: but, no violation left in hadron phase.

Communication with dQCD and sterile Dirac fermion

$$V_{MM_d} = \lambda_{\rm mix} {\rm tr}[M^{\dagger}M] (M_d^{\dagger}M_d)$$

$$m_{\chi}\bar{\chi}\chi + g(\bar{n}\chi + \bar{\chi}n)$$

---- dQCD exhibits **1st order \chiPT** with order parameter $\langle \sigma_d \rangle$ and **couples to QCD** in a double chiral invariant manner: $\langle \sigma \rangle$ gets jumped down/up, into out-of-Eq

Communication with dQCD and sterile Dirac fermion

$$V_{MM_d} = \lambda_{\min} \operatorname{tr}[M^{\dagger}M](M_d^{\dagger}M_d)$$

$$m_{\chi}\bar{\chi}\chi + g(\bar{n}\chi + \bar{\chi}n)$$

- Sakharov's criteria: A. D. Sak arov, Pisma Zh. Eksp. Teor. Fiz. 5, 32-35 (1967)
 - Baryon number violation;
 - C and CP violation;
 - Departure from equilibrium

different cosmological setups between the chiral crossover and supercooled χPT

different cosmological setups between the chiral crossover and supercooled χPT

➢ QCD preheating: triggered by QCD with dQCD

Thermal history:

Everything done around Tpc with reheating

➢ QCD preheating: triggered by QCD with dQCD

different cosmological setups between the chiral crossover and supercooled χPT

[1] Surviving from high energy bound on dQCD (w/ Nd=3 and 3+1 f)

Fixing $\alpha s(Mz)$ to EW precision test,

Asymptotic freedom > TeV IR scaling < 10 GeV

can be sensitive to new quarks (Q)

From PDG (2024)

[1] Surviving from high energy bound on dQCD (w/ Nd=3 and 3+1 f)

[1] Surviving from high energy bound on dQCD (w/ Nd=3 and 3+1 f)

Clarifying IR running crucial to place limits further on Nd

e.g. FRG method: nearly conformal, or else

A.Deur, S.J.Brodsky and C.D.Roberts, Prog. Part. Nucl. Phys. 134 (2024)

From PDG (2024)

[2] n-mixing partner: Dirac sterile fermion $\chi \simeq 1 \text{ GeV} > m_{n,p}$

Like a "dark baryon" only coupled to n

$$m_{\chi} \bar{\chi} \chi + g(\bar{n} \chi + \bar{\chi} n)$$

Free from cosmo. and pheno. constraints, if short-lived enough to decay before BBN: $t_{BBN} \simeq 0.1s$

D.McKeen, M.Pospelov and N.Raj, PRD 103 (2021)

Decay via n – X converting anomalous magnetic moment int.

$$\mathcal{L}_{\chi n\gamma} = \frac{\mu_n}{2} \cdot \theta \cdot \bar{\chi} \sigma_{\mu\nu} F^{\mu\nu} n + \text{h.c.} ,$$
$$\mu_n \simeq 1.91 \mu_N$$

$$\Gamma[\chi \to n\gamma] \simeq \frac{1}{2200 \,\mathrm{s}} \left(\frac{\theta}{10^{-10}}\right)^2 \left|\frac{\Delta m}{10 \,\mathrm{MeV}}\right|^3$$

 $\Delta m = m_{\chi} - m_n$

[2] n-mixing partner: Dirac sterile fermion $\chi \simeq 1 \text{ GeV} > m_{n,p}$

Like a "dark baryon" only coupled to n

$$m_{\chi} \bar{\chi} \chi + g(\bar{n} \chi + \bar{\chi} n)$$

Free from cosmo. and pheno. constraints, if short-lived enough to decay before BBN: $t_{BBN} \simeq 0.1s$

D.McKeen, M.Pospelov and N.Raj, PRD 103 (2021)

Decay via n – X converting anomalous magnetic moment int.

$$\mathcal{L}_{\chi n\gamma} = \frac{\mu_n}{2} \cdot \theta \cdot \bar{\chi} \sigma_{\mu\nu} F^{\mu\nu} n + \text{h.c.} ,$$
$$\mu_n \simeq 1.91 \mu_N$$

$$\theta = rac{g}{\Delta m}$$
 $\Delta m = m_{\chi} - m_n$

$$\Gamma[\chi \to n\gamma] \simeq \frac{1}{2200 \,\mathrm{s}} \left(\frac{\theta}{10^{-10}}\right)^2 \left|\frac{\Delta m}{10 \,\mathrm{MeV}}\right|^3$$

 $g \gtrsim 10^{-8} \,(10^{-7}) \,{
m MeV}\,, \qquad {
m for} \qquad \Delta m = 10 \,(200) \,{
m MeV}$

J.Wang, X.R.Wang and S.M, JHEP 08 (2024)

[2] n-mixing partner: Dirac sterile fermion $\chi \sim 1 \text{ GeV} > m_{n,p}$

[2] n-mixing partner: Dirac sterile fermion χ w/mx ~ 1 GeV > m_{n,p}

$$m_{\chi}\bar{\chi}\chi + g(\bar{n}\chi + \bar{\chi}n)$$

 $|g \sim 0.1 - 1 MeV|$

\sim generated from LQ (Φ) exchange

Y.Aoki, T.Izubuchi, E.Shintani and A.Soni, Phys. Rev. D96 (2017)

[2] n-mixing partner: Dirac sterile fermion χ w/mx ~ 1 GeV > m_{n,p}

 $a \sim 0.1 - 1 \, MeV$ $m_{\chi}\bar{\chi}\chi + g(\bar{n}\chi + \bar{\chi}n)$ Also survives upper bound from LEP squark search: gets less sensitive as m < 10 GeV \sim --- generated from LQ (Φ) e D.E.Kaplan and M.D.Schwartz, Phys. Rev. Lett. 101 (2008) R.Barate et al. [ALEPH], Z. Phys. C76 (1997) χ $g \sim \frac{y_{u\chi} y_{dd} \cdot \beta}{M_{\Phi}^2} \sim 0.3 \,\mathrm{MeV} \times \left(\frac{y_{u\chi} y_{dd}}{0.1}\right)$ $\frac{2 \,\mathrm{GeV}}{M_{\star}}$ Vdd yuχ U $\beta = \langle n | q q q | 0 \rangle \simeq 0.014 \, \mathrm{GeV}^3$ from lattice QCD

Y.Aoki, T.Izubuchi, E.Shintani and A.Soni, Phys. Rev. D96 (2017)

[2] n-mixing partner: Dirac sterile fermion χ w/mx ~ 1 GeV > m_{n,p}

$$\begin{split} m_{\chi}\bar{\chi}\chi + g(\bar{n}\chi + \bar{\chi}n) & g \sim 0.1 - 1 \, \text{MeV} \\ g \sim \frac{y_{u\chi}y_{dd} \cdot \beta}{M_{\Phi}^2} \sim 0.3 \, \text{MeV} \times \left(\frac{y_{u\chi}y_{dd}}{0.1}\right) \left(\frac{2 \, \text{GeV}}{M_{\Phi}}\right)^2 \end{split}$$
QCD-preheating BG

[2] n-mixing partner: Dirac sterile fermion χ w/mx ~ 1 GeV > m_{n,p}

$$\begin{split} m_{\chi}\bar{\chi}\chi + g(\bar{n}\chi + \bar{\chi}n) & g \sim 0.1 - 1 \ \text{MeV} \\ \\ \text{QCD-preheating BG} & g \sim \frac{y_{u\chi}y_{dd}\cdot\beta}{M_{\Phi}^2} \sim 0.3 \ \text{MeV} \times \left(\frac{y_{u\chi}y_{dd}}{0.1}\right) \left(\frac{2 \ \text{GeV}}{M_{\Phi}}\right)^2 \end{split}$$

Compared to another QCD BG: "Mesogenesis"

s,b

$$g \sim \frac{y_{u\chi}y_{dd}\cdot\beta}{M_{\Phi}^2} \sim 10^{-6} \,\mathrm{MeV} \times \left(\frac{y_{u\chi}y_{dd}}{0.1}\right) \left(\frac{1\,\mathrm{TeV}}{M_{\Phi}}\right)^2$$

G.Alonso-'Alvarez, G.Elor, M.Escudero, B.Fornal, B.Grinstein and J.Martin Camalich, Phys. Rev. D105 (2022)
G.Elor and R.McGehee, Phys. Rev. D103 (2021)
F.Elahi, G.Elor and R.McGehee, Phys. Rev. D105 (2022)
J.Berger and G.Elor, Phys. Rev. Lett.132 (2024)

[2] n-mixing partner: Dirac sterile fermion χ w/mx ~ 1 GeV > m_{n,p}

$$m_{\chi}\bar{\chi}\chi + g(\bar{n}\chi + \bar{\chi}n) \qquad g \sim 0.1 - 1 \text{ MeV}$$

$$g \sim \frac{y_{u\chi}y_{dd}\cdot\beta}{M_{\Phi}^2} \sim 0.3 \text{ MeV} \times \left(\frac{y_{u\chi}y_{dd}}{0.1}\right) \left(\frac{2 \text{ GeV}}{M_{\Phi}}\right)^2$$
QCD-preheating BG
$$\Rightarrow \text{Characteristic low-mass LQ}$$

Belle II (~11 GeV) and/or BES III (~ 5GeV) might hunt it, in soft-collinear multijets channels, like light squark search

e+ e- -> Z*/γ* -> q q -> jets + 2 LQ -> multijets

[3] **QCD** production of dQCD hadrons at collider exp.

--- QCD – dQCD color inv. forbids to form light extra hadrons, e.g., qbar Q,

--- chiral symmetries in both QCD and dQCD require new hadrons to be exotic and show up in chiral singlet channel:

$$\sim \bar{q}_L q_R \bar{q}_R q_L \bar{Q}_L Q_R \bar{Q}_R Q_L$$

That is, sigma scattering process:

$$\sigma \sigma \rightarrow \sigma \sigma \sigma \sigma$$
 Highly challenging to probe in exp...

<u>Summary</u>

New cosmo. and pheno: look at QCD scale

New cosmo. and pheno: look at QCD scale

Scale PT [1st order]

- \rightarrow inflation
- \rightarrow EWSB
- → dQCD PT [1st order]
- ➔ QCD-preheating BG
- → QCD PT [crossover end]
- → BBN

BNV messenger: LQ at ~ 2 GeV multijets events at Belle II and/or BES III [maybe]

n - mixing partner: χ at 1 GeV > mn,p

X -> $n\gamma$ [no prospect at present, challenging at exp]

New cosmo. and pheno: look at QCD scale

Scale PT [1st order]

- \rightarrow inflation
- \rightarrow EWSB
- → dQCD PT [1st order]
- ➔ QCD-preheating BG
- → QCD PT [crossover end]
- → BBN

dQCD hadrons: σd, ηd, ... at = O(sub GeV) **3γ events** at Belle II, BESIII, EIC

-- Bin Wang's talk, yesterday

walking hadrons, B-L Higgs, gauge, S-scalar ~{10^9, 10^9, 10^2} TeV [except FIMP: walking pion ~ 500 GeV] -- Jie Liu's talk, today

BNV messenger: LQ at ~ 2 GeV multijets events at Belle II and/or BES III [maybe]

n - mixing partner: χ at 1 GeV > mn,p

X -> $n\gamma$ [no prospect at present, challenging at exp]

More on new aspect of QCDPT epoch. [not covered & to be pursued]

--- ALP-DW with QCD sphaleron vs. nano Hz GW

[Linlin Huang's talk, today]

L.Huang, Y.Wang, H.X.Zhang, S.M, H.Ishida, M.Kawaguchi and A.Tomiya, Phys. Rev. D109 (2024), and further investigations still in progress

Clarifying QCD thermal history w/ $\theta(=a/fa)=\pi$ and $\theta=nonzero$

--- GW & PBH productions via dQCD 1st order PT

--- DM (dQCD hadrons) production via dQCD-preheating

