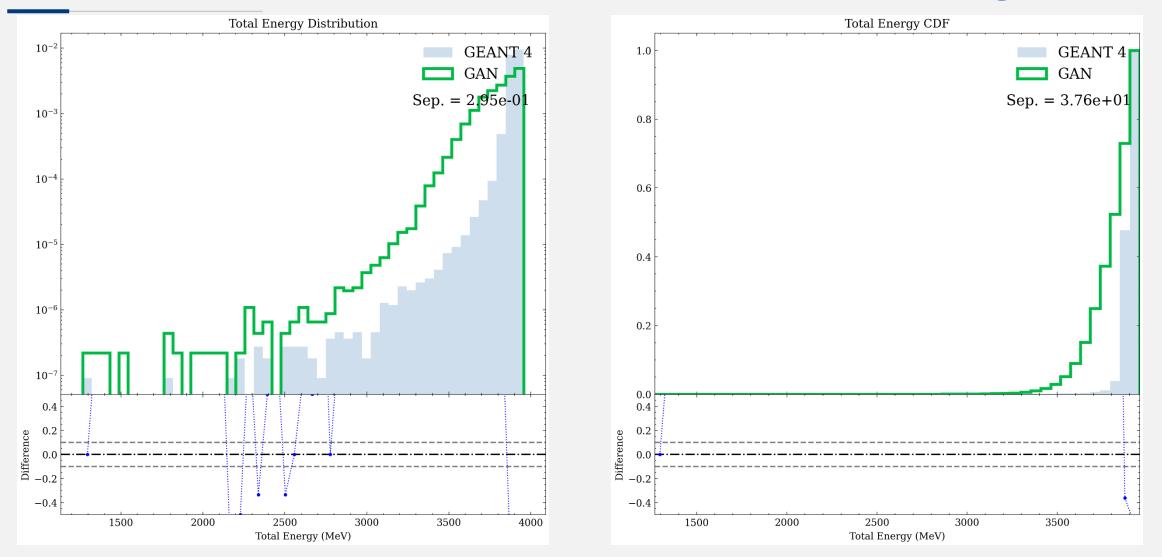


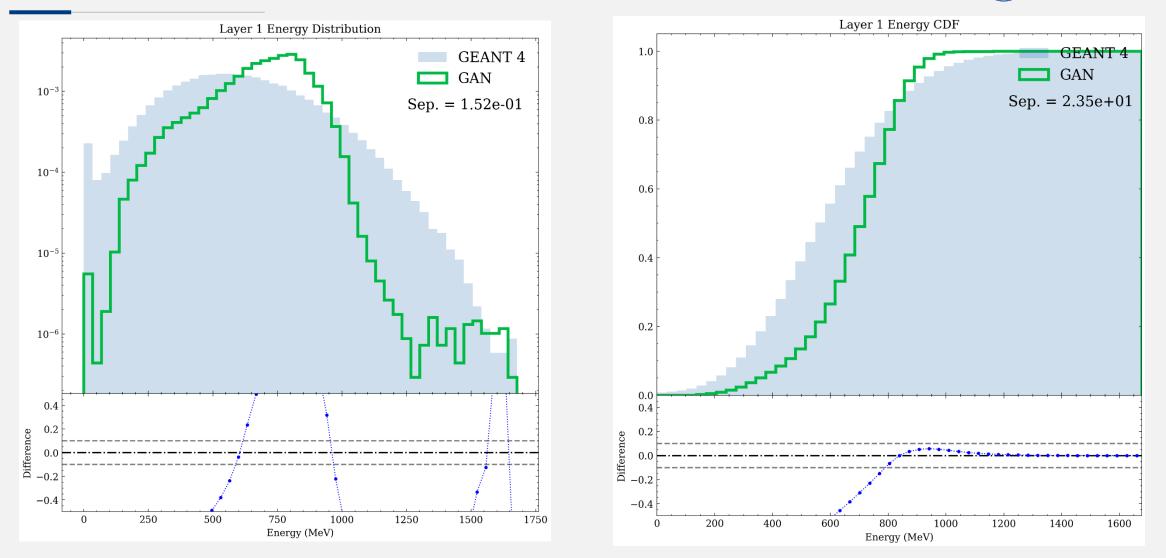
Weekly Summary

周柏宏 2024年7月5日星期五



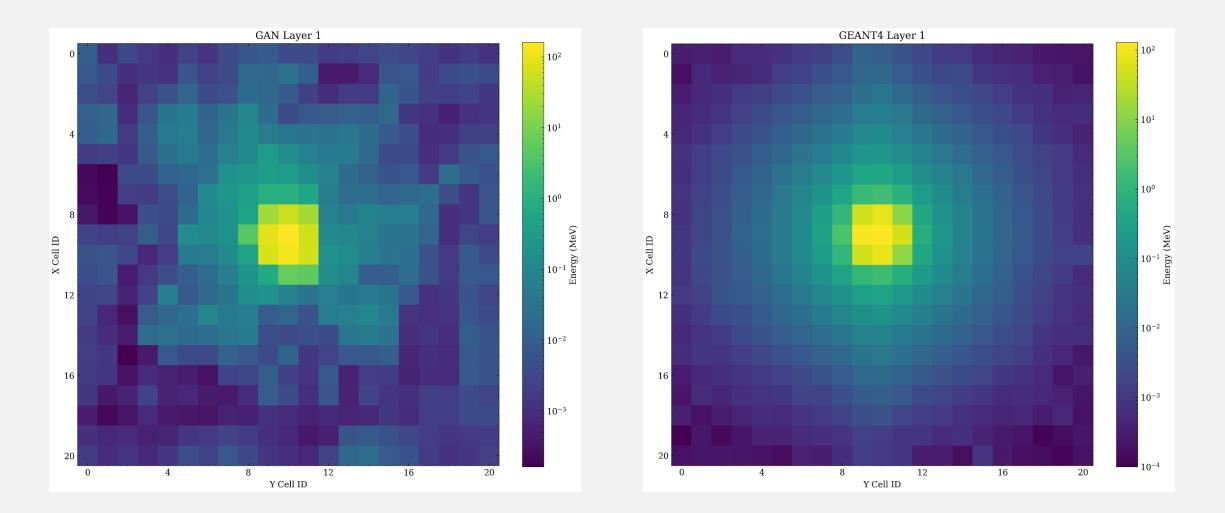
- Dark SHINE
 - Got the Fast Simulation results for 4 GeV inclusive samples using the best model before;
- Tri Higgs
 - Produced the Ntuples for ML signal discrimination;
 - Reproduced the Ntuples based on the latest framework;
 - Got the pairing results from Nick;

• Finished – Dark SHINE – Total E



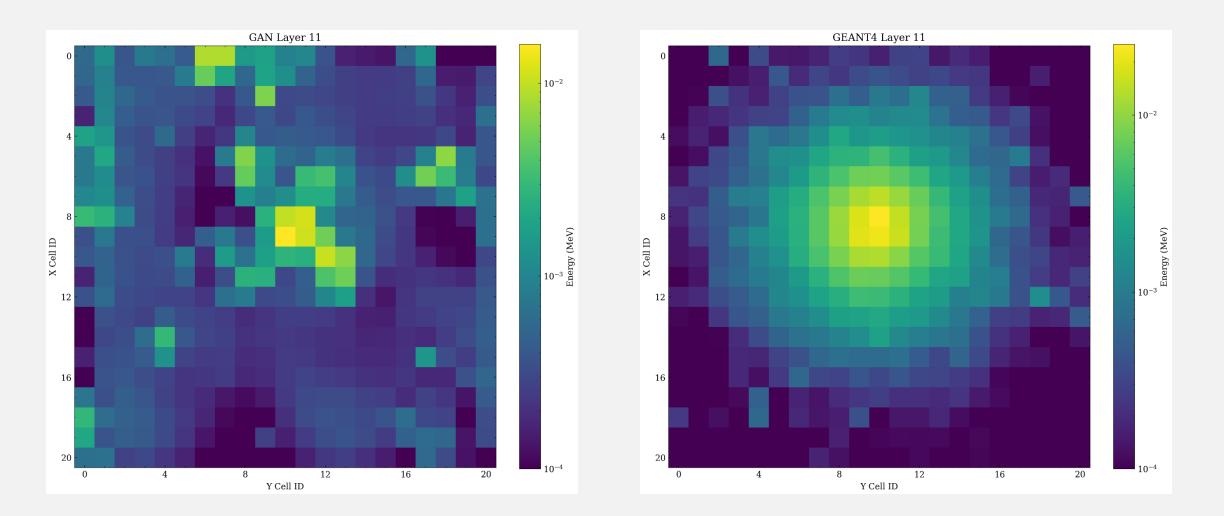
Learned trends but did not learn details

• Finished – Dark SHINE – Layer E



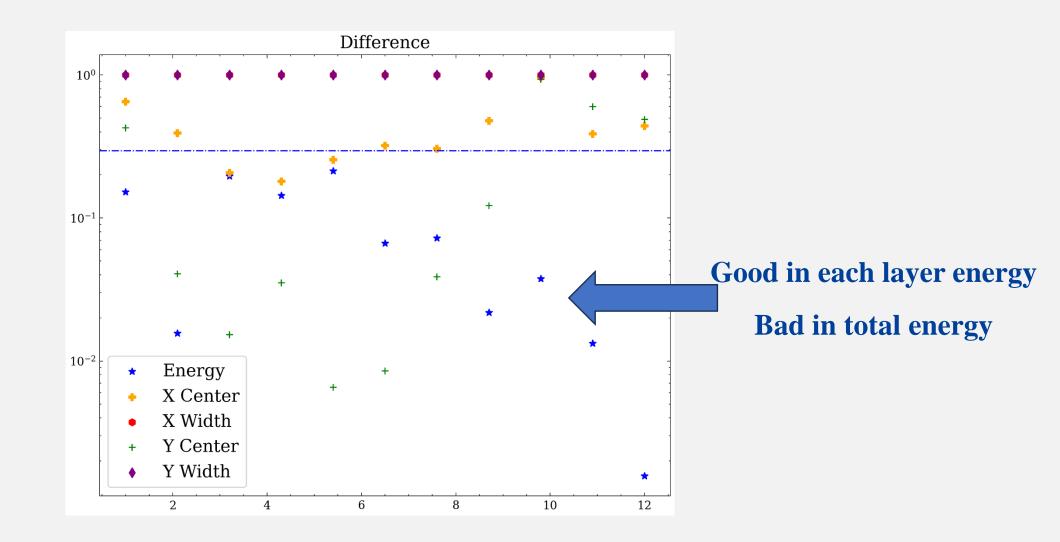
Learned some trends, but the distribution is not reasonable

• Finished – Dark SHINE – Layer

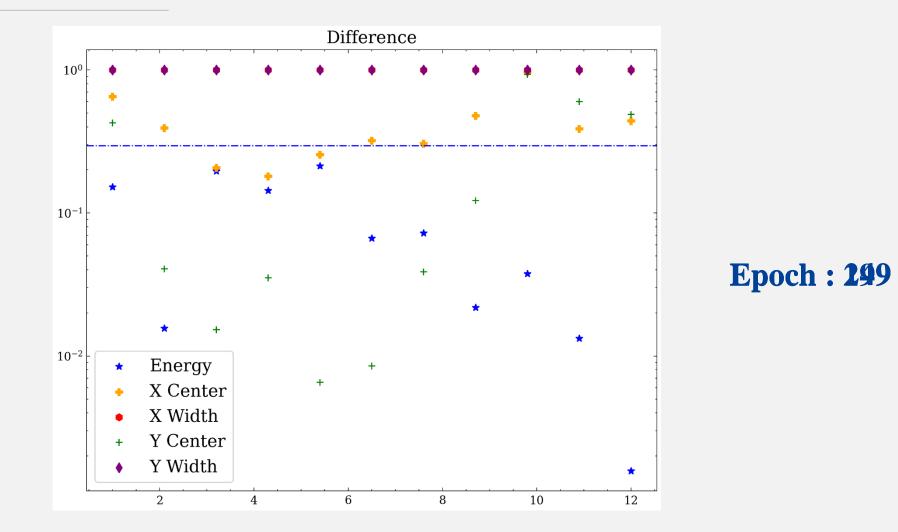


Relatively reasonable deposited energy image

• Finished – Dark SHINE – Layer



The first time a relatively reasonable deposited energy image was generated in the last layer


• Finished – Evaluation – Summary

• Finished – Evaluation – Epoch

The epoch set before is not suitable for 4 GeV samples

• Finished – triHiggs – ML

• No definitions change in the variables we use in ML;

Variable	Definition
rms $\frac{m_{dijet}}{\Delta R_{dijet}}$	RMS of masses of the angular separation between all possible dijet
	combinations can form a Higgs Boson candidate
$\frac{\text{rms-Skewness}}{\Delta A_{dijet}}$	RMS Skewness of $\cosh(\Delta \eta_{ij}) - \cos(\Delta \phi_{ij})$, where <i>i</i> , <i>j</i> are all possible
	dijet combinations that can form a Higgs Boson candidate
$H_{T_{6jets}}$	Scalar sum of the $p_{\rm T}$ of the 6 jets selected to reconstruct the 3 Higgs
	Boson candidates
$m_H \cos \theta$	θ is the angle between the vector of the reconstructed mass of the Higgs
	Boson candidates in the $m_{H1} - m_{H2} - m_{H3}$ coordinate system and vector
	formed by the origin to $(m_{H1} - m_{H2} - m_{H3}) = (120, 115, 110)$ GeV.
Aplanarity _{6jets}	The fraction of $p_{\rm T}$ of from the 6 jets selected to reconstruct the 3 Higgs
	Boson candidates outside of a plane lying outside the plane formed by
	the 2 leading jets.
	Isotropy of the -momentum of the 6 jets selected to reconstruct the 3
Transverse Sphericity _{6jets}	Higgs Boson candidates with respect to the transverse (x,y) plane.
$\eta - m_{HHH}$ fraction	$\frac{\sum_{i,j} 2p_{T_i} * p_{T_j} * (\cosh(\Delta \eta_{ij}) - 1)}{m_{HHH}^2}$ where <i>i</i> , <i>j</i> are all possible dijet combinations
	m_{HHH}^{2} that can form a Higgs Boson candidate, and m_{HHH} is the reconstructed
	tri-Higgs invariant mass
$\Delta \mathbf{R}_{H1}$	Angular separation between the 2 jets paired to form the leading Higgs
	Boson candidate
ΔR_{H2}	Angular separation between the 2 jets paired to form the sub-leading
	Higgs Boson candidate
ΔR_{H3}	Angular separation between the 2 jets paired to form the least-leading
	Higgs Boson candidate

Table 6.1: A table summarising the input variables used in resDNN training.

• Finished – triHiggs – ML

- How can I make sure the correct partitioning of the training set:
 - For signal:
 - All the entries are placed in Ntuple by the order of an vector with random number;

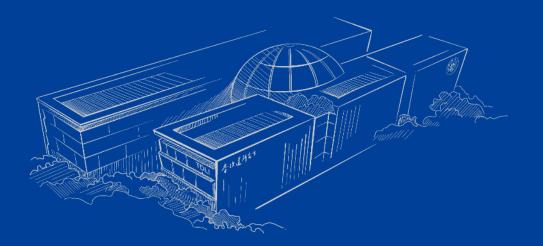
- For background:
 - Just as the order of the entry number;

• Finished – triHiggs – New Ntuples produce

- Change may not be so many:
 - HHHCommon updates; → Data 18

~ 🗄	✓ sources/HHHCommon/config/masterConfig.py Hu = 1 -1 View file @ ff5fl			
		@@ -59,7 +59,7 @@ grlsBJets = [
59	59	'GoodRunsLists/data15_13TeV/20170619/data15_13TeV.periodAllYear_DetStatus-v89-pro21-02_Unknown_PHYS_StandardGRL_All_Good_25ns.xml',		
60	60	'GoodRunsLists/data16_13TeV/20180129/data16_13TeV.periodAllYear_DetStatus-v89-pro21-01_DQDefects-00-02-		
		04_PHYS_StandardGRL_All_Good_25ns_BjetHLT.xml',		
61	61	'GoodRunsLists/data17_13TeV/20180619/data17_13TeV.periodAllYear_DetStatus-v99-pro22-		
		01_Unknown_PHYS_StandardGRL_All_Good_25ns_BjetHLT_Normal2017.xml',		
62		- 'GoodRunsLists/data18_13TeV/20 <mark>190318</mark> /data18_13TeV.periodAllYear_DetStatus-v102-pro22-		
		04_ <mark>Unknown_</mark> PHYS_StandardGRL_All_Good_25ns_ <mark>Triggerno17e33prim</mark> .xml'		
	62	+ 'GoodRunsLists/data18_13TeV/20200426/data18_13TeV.periodAllYear_DetStatus-v102-pro22-04_PHYS_StandardGRL_All_Good_25ns_BjetHLT.xml'		
63	63]		
64	64			
65	65	grlsStandard = [

• xAOD updates; \rightarrow nCPack error;



- Dark SHINE
 - Talk with Qibin about how to use Calo-VQ for Fast Simulation;;
- Tri-Higgs
 - Produce the Ntuples based on the latest framework; (521173, 2017-2018)
 - Check our pairing results using the latest Ntuples;
 - Produce the v6 Ntuples for ML;
 - Get cutflow using Nick's codes;
 - Check with Nick concerning the pairing and the definition of the variables for signal discrimination;

谢谢!

