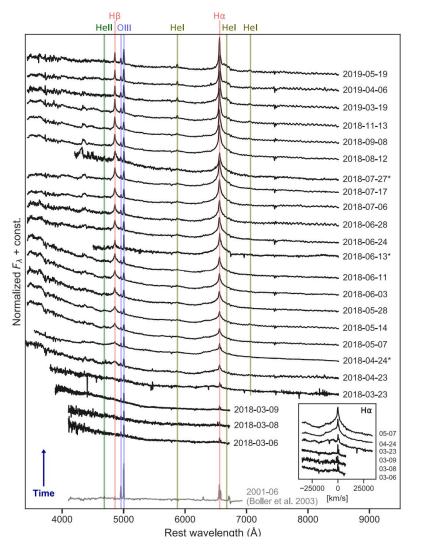

An accretion disk with magnetic outflows triggered by a TDE in changing-look AGN 1ES 1927+654


Xinwu Cao (曹新伍)

Institute for Astronomy, Zhejiang University

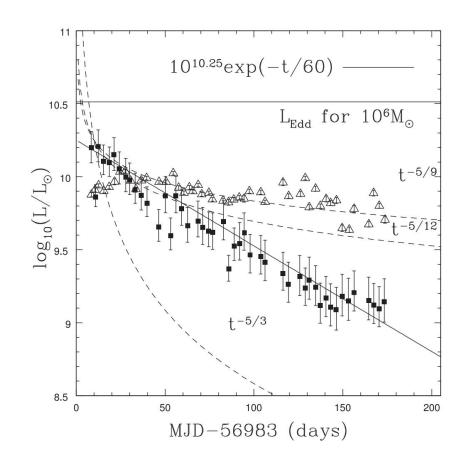
Collaborators: Bei You, Xing Wei

1ES 1927+654 was a narrow-line Seyfert galaxy before the UV/optical outburst in 2017 z = 0.019422

Trakhtenbrot+ 2019, ApJ, 883, 94

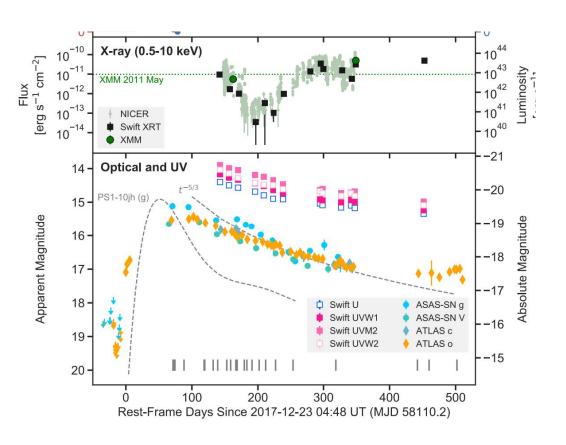
Observational features:

- 1. L(0.3-10keV)=6.81e42 erg/s (observed in 2011 as a Seyfert 2 galaxy);
- 2. A UV/optical outburst was observed in the end of 2017:
 - a. peak emission is about four magnitudes brighter than that in the pre-outburst state
 - b. UV/optical emission declined slowly, similar to a typical light-curve of a TDE
- 3. X-ray dip (~150 days after UV/optical outburst):
 - a. flux declines rapidly with the power-law component completely disappearing a couple of days before the X-ray emission reached its lowest level ~150 days after the UV/optical peak;
 - b. With the soft X-ray emission increasing from the lowest flux, the power law X-ray emission reappeared and backed to (or even brighter than) the flux before the X-ray dip within the next ~100 days.


Spectral Parameters Obtained for the 14 Swift/XRT Observations (See Section B.2 and Figure B1)

(1)	(2)	(3)	(4)	(5)
Obs. ID	kT	Γ	C-stat/DOF	$L_{0.3-2}$
	(eV)			(erg s^{-1})
00010682001	149 ± 10	$4.52^{+0.56}_{-0.41}$	161/129	$1.26^{+0.03}_{-0.06} \times 10^{43}$
00010682002	101^{+7}_{-6}	***	54/68	$2.60^{+0.15}_{-0.19} \times 10^{42}$
00010682003	105^{+10}_{-9}	***	47/58	$1.47^{+0.12}_{-0.15} \times 10^{42}$
00010682004	56^{+41}_{-23}	1444	8/5	$1.40^{+0.12}_{-1.40} \times 10^{41}$
00010682005	<i>≥</i> 71	•••	13/3	$3.10^{+2.68}_{-3.10} \times 10^{41}$
00010682006	85^{+19}_{-16}	1	10/18	$3.31^{+0.49}_{-0.90} \times 10^{41}$
00010682007	94 ± 8	***	52/59	$1.62^{+0.12}_{-0.15} \times 10^{42}$
00010682008	141^{+13}_{-10}	$2.95^{+0.51}_{-0.70}$	146/128	$1.42^{+0.12}_{-0.05} \times 10^{43}$
00010682009	205^{+26}_{-23}	$3.48^{+0.37}_{-0.32}$	151/165	$3.60^{+0.13}_{-0.15} \times 10^{43}$
00010682010	159^{+13}_{-12}	$3.96^{+0.80}_{-0.70}$	126/124	$2.09^{+0.08}_{-0.09} \times 10^{43}$
00010682011	148^{+12}_{-8}	$3.11^{+0.77}_{-1.63}$	127/123	$1.68^{+0.13}_{-0.05} \times 10^{43}$
00010682012	132^{+11}_{-10}	$4.36^{+2.60}_{-4.36}$	101/104	$7.33^{+0.92}_{-0.65} \times 10^{42}$
00010682013	153^{+11}_{-7}	$3.16^{+0.46}_{-0.78}$	122/149	$2.68^{+0.18}_{-0.14} \times 10^{43}$
00010682014	182^{+10}_{-8}	$2.84^{+0.22}_{-0.27}$	214/218	$4.54 \pm 0.10 \times 10^{43}$

TDE


- 1. For a normal solar-like star captured by a massive BH, its tidal disruption radius is very close to the ISCO;
- 2. For 1ES 1927+654, its inner accretion disk with corona would be destructed instantly when a normal star is tidally disrupted by the BH;
- 3. The radiation from the newly formed disk after the TDE should dominate in the soft X-ray energy band, whereas no similar slowly declining light-curve in X-ray energy bands has been observed as those observed in normal TDEs;

Evolution of TDE ASASSN-14li's light curves

Holoien+ 2016, MNRAS 455, 2918

Model

We assume that a TDE takes place in the outer region of the disk that emits UV/optical photons

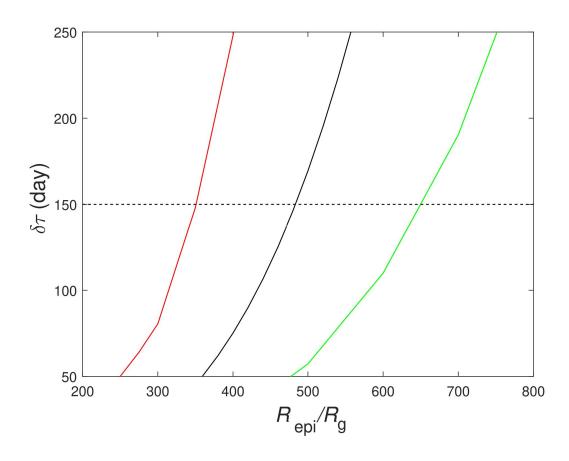
The disk-corona surrounding the BH is destructed by the TED disk within ~150 days.

Impact of an episodic accretion event on the inner accretion disk

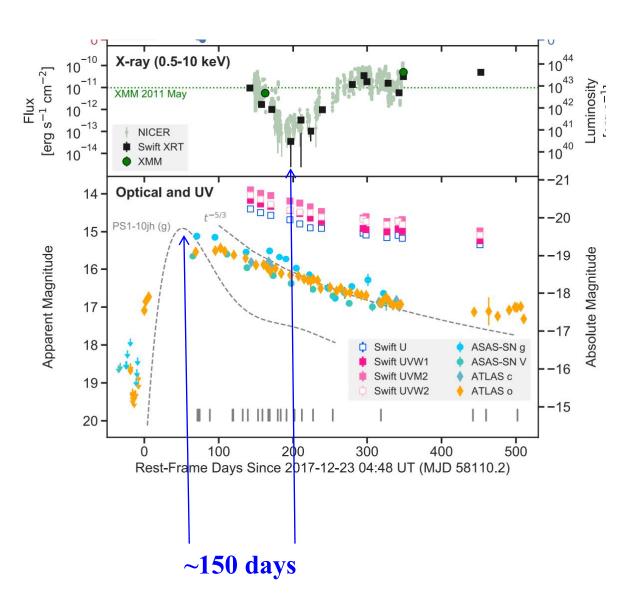
Assuming that the inner disk corona is swept up by the TDE disk in a timescale of $\delta \tau$, the momentum change of the inner disk during the period $\delta \tau$ is

$$\delta p \sim M_{\rm d}(R < R_{\rm epi})v_{\rm d}, \qquad v_{\rm d} \sim R_{\rm epi}/\delta \tau$$

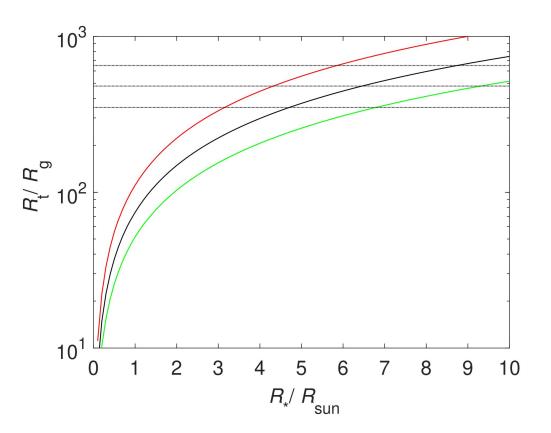
Momentum conservation requires


tum conservation requires X-ray observation in 2011
$$\dot{M}_{
m epi}v_{
m epi}(R_{
m epi})\delta au\sim M_{
m d}(R< R_{
m epi})v_{
m d}\sim M_{
m d}(R< R_{
m epi})R_{
m epi}/\delta au$$
 Outburst $M_{
m d}(R< R_{
m epi})R_{
m epi}$ $M_{
m d}(R< R_{
m epi})=7.8 imes 10^{-14}
m c^{-1} mm^{-1}$

$$\delta au \sim \left[rac{M_{
m d}(R < R_{
m epi})R_{
m epi}}{\dot{M}_{
m epi}v_{
m epi}}
ight]^{1/2}$$


$$\frac{\text{UV/optical outburst}}{\delta \tau} \sim \left[\frac{M_{\rm d}(R < R_{\rm epi}) R_{\rm epi}}{\dot{M}_{\rm epi} v_{\rm epi}} \right]^{1/2} \qquad \frac{M_{\rm d}(R < R_{\rm epi})}{\dot{M}_{\rm epi}} = 7.8 \times 10^{-14} \alpha^{-1} m \dot{m}^{-1} \dot{m}_{\rm epi}^{-1} r_{\rm epi}^{7/2}, \quad {\rm day}$$

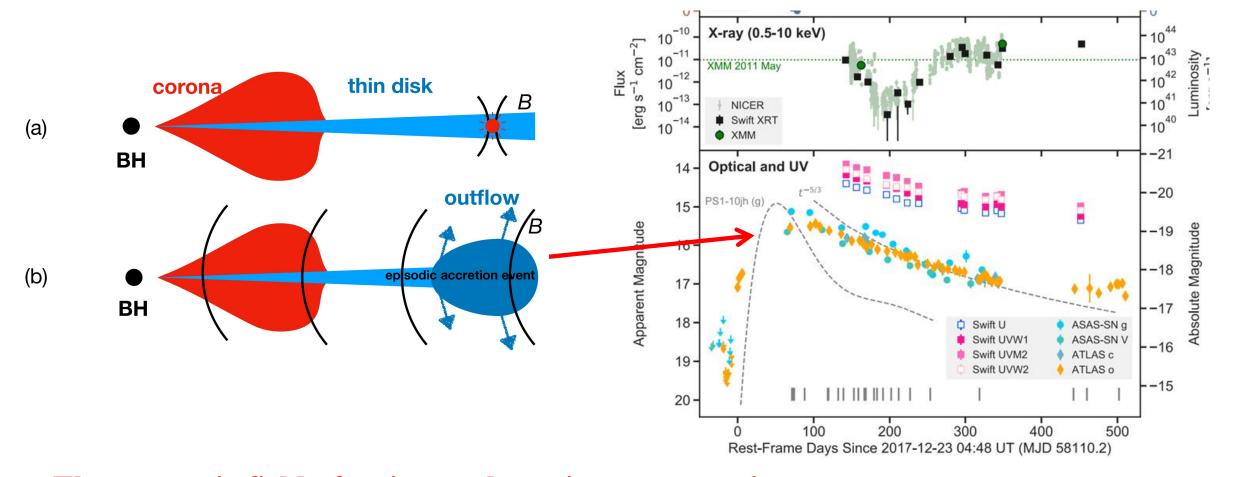
The front of the TDE disk moves inwards, and pushes the inner disk, which shrinks in size accordingly.


It finally disappeared within ~150 days

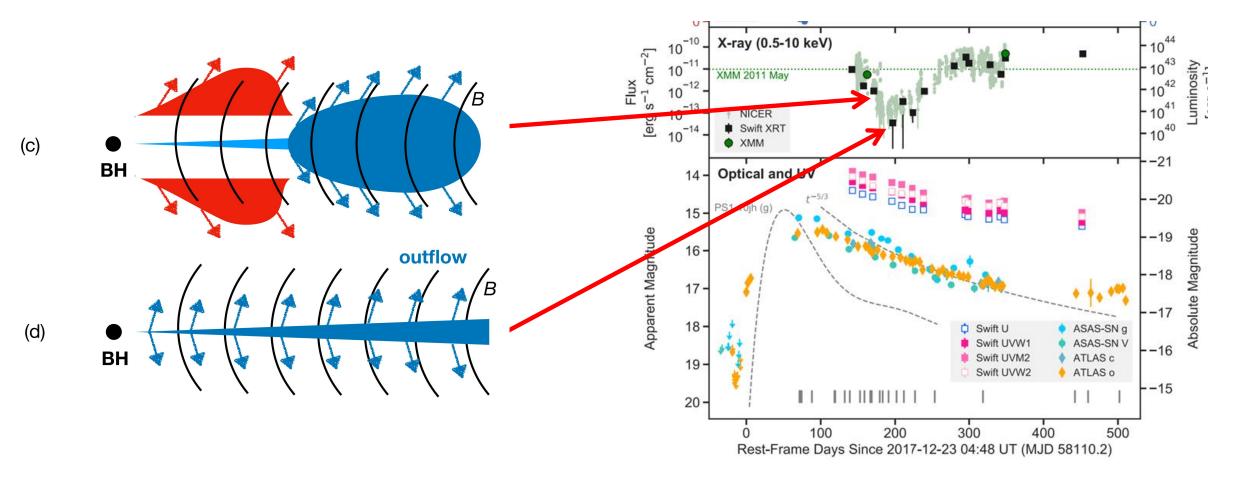
 $\alpha = 0.03$ (red), 0.1 (black), and 0.3 (green)

$$r_{\rm t} \equiv \frac{R_{\rm t}}{R_{\rm g}} = 33.3 \left(\frac{M_{\rm bh}}{10^6 M_{\odot}}\right)^{-2/3} \left(\frac{R_*}{R_{\odot}}\right) \left(\frac{M_*}{M_{\odot}}\right)^{-1/3}$$

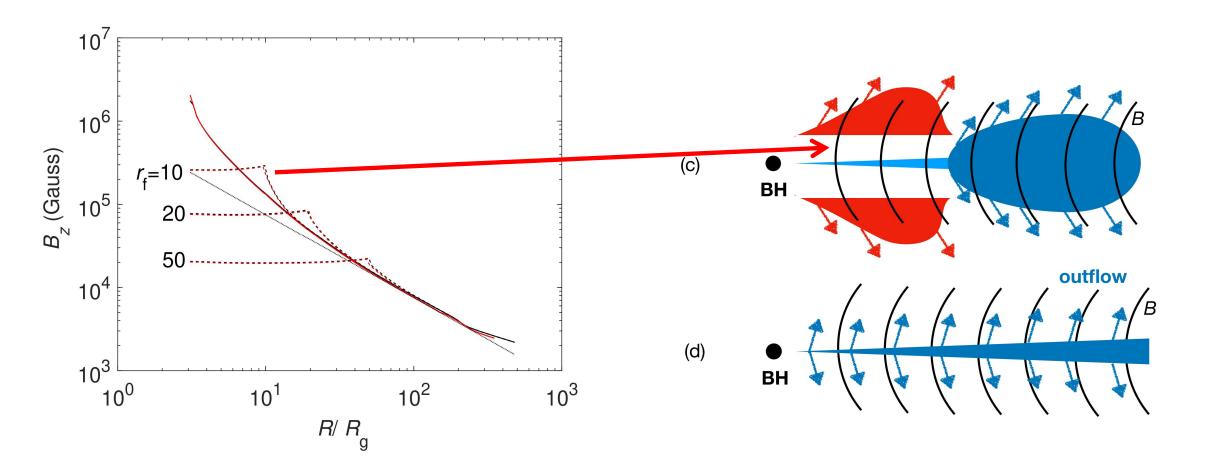
Possible candidates:


- 1. red giant
- 2. protostar in Hayashi track

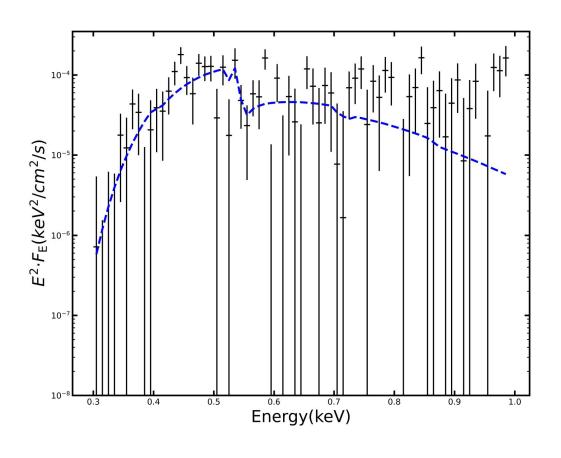
We suggest a solar-mass red giant star with ~5 solar radii is disrupted in the outer region of the accretion disk!


The tidal disruption radius R_t versus the star radius with different star masses (red: $0.3M_{\odot}$, black: $1M_{\odot}$, and green: $3M_{\odot}$). The horizontal dotted lines denote $R_t = 350R_g$, $480R_g$, and $650R_g$, respectively.

$$t_{\rm fb} = 0.36 \left(\frac{R_{\rm t}}{R_{\rm p}}\right)^{-3n/2} \left(\frac{M_{\rm bh}}{10^7 M_{\odot}}\right)^{1/2} \left(\frac{M_*}{M_{\odot}}\right)^{-1} \left(\frac{R_*}{R_{\odot}}\right)^{3/2} {\rm yr},$$


Fallback time of TDE debris is ~50 days, consistent with the rising timescale of the optical burst!

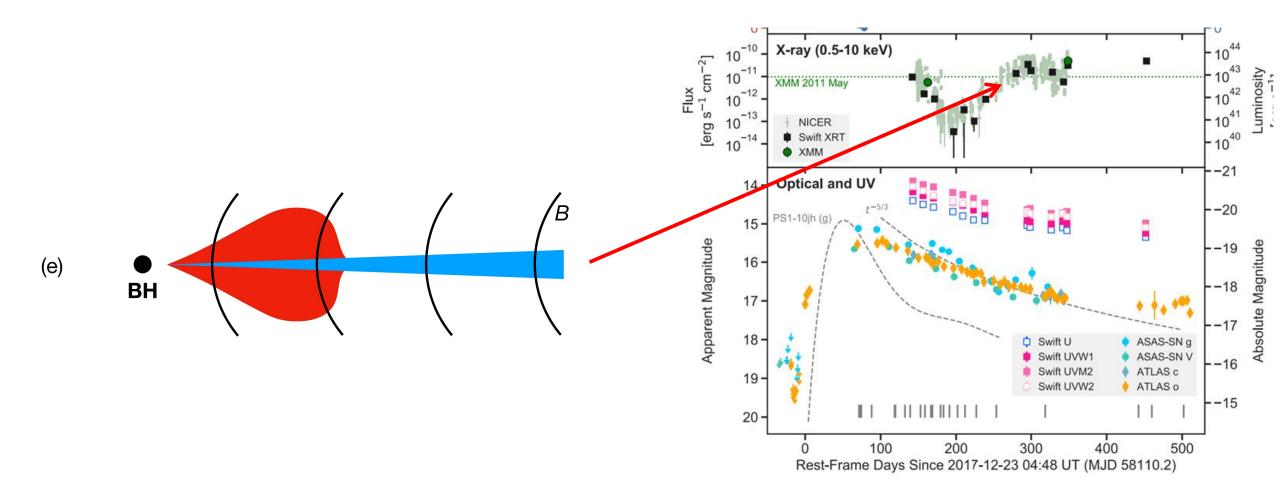
The magnetic field of a giant red star is very strong!


- 1. The field threading the disrupted star is dragged inwards by the disk formed after the TDE, which accelerates outflows from the disk.
- 2. The disk dimmed since a large fraction of the energy released in the disk is tapped into the outflows.

Black line: the minimal magnetic field required to accelerate the corona into outflows Solid line: the field of the TDE disk extends to the ISCO.

Model fitting of the X-ray spectra

We use our model to fit the X-ray spectra during the X-ray dip.



 $\alpha = 0.1$

Two epochs: MJD 58323 (Obs ID: 1200190151) and MJD 58325 (ObsID: 1200190153). The spectra of these two epochs are then combined for better statistics using the tool addspec.

We note that, the best-fitting values: $B_{\text{ext}} = 2.19e3$ Gauss ($\beta_{\text{ext}} = 85.5$)

Typical field strengths of red giant stars are several thousand Gauss in their envelopes, or ~ 10^5 Gauss in the cores of the red giant stars.

- 1. The accretion rate of the TDE declines, and ultimately it turns out to be a thin disk, which is inefficient for field advection. The field is therefore too weak, and the outflows are switched off.
- 2. A thin disk with corona reappears later after the outburst.

Summary

- 1. A red giant star tidally disrupted in the outer region of the disk in 1ES 1927+654.
- 2. The inner thin disk with corona is completely swept by the accretion event when the gas reaches the ISCO ~150 days after the UV/optical outburst.
- 3. The field threading the disrupted star is dragged inwards by the disk formed after the TDE, which accelerates outflows from the disk.
- 4. The disk dimmed since a large fraction of the energy released in the disk is tapped into the outflows.
- 5. The accretion rate of the TDE disk declines, and ultimately it turns out to be a thin disk, which is inefficient for field advection, and the outflows are switched off. A thin disk with corona reappears later after the outburst.

Thanks!