

Modeling the light curves of re-brightening TDEs

Shiyan Zhong zhongsy@ynu.edu.cn

Tidal Disruption Event (TDE)

What is TDE?

A star approaching to an MBH is torn apart and accreted, producing a luminous flare that can last for months to years.

Observation

Multi-band: X-ray, UV/Optical, IR, radio

Number of detection: more than 100, will be boosted in the coming decade

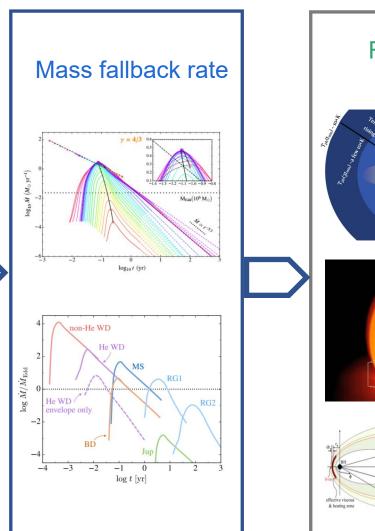
Application of TDE

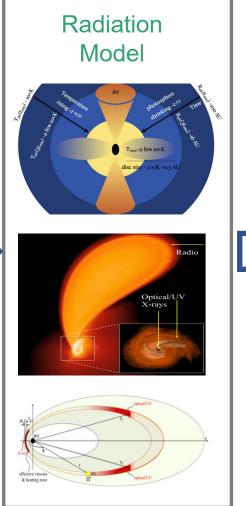
Light curve: detect dormant MBH and measure its mass; study accretion physics & radiation mechanism

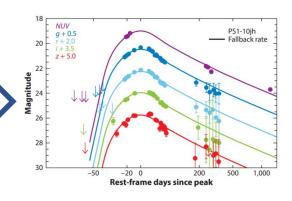

Event rate: stellar dynamics in galactic center

₩D-8H encounter

masses (sol.)	0.2 (WD) & 1000 (BH)
in. separation	50 (in 1.E9 cm)
hydrodynamics	SPH (4 030 000 particles)
EOS, gravity	Helmholtz, N
nucl. burning	red. QSE—network (Hix 98)
simul. time	5.4 min
color coded	column density
penet. factor	12
coding, simulation, visualisation:	S. Rosswog


http://compact-merger.astro.su.se/Movies/IMBH1000 WD02 4e6parts P12 N.mov

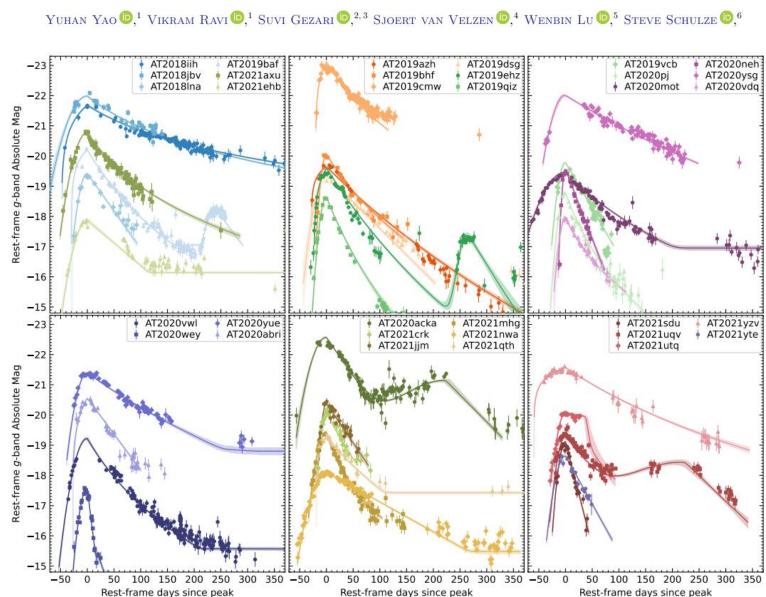

Flow chart of UV/Optical light curve modeling



- Stellar mass/structure
- Orbital eccentricity
- Penetration factor β

$$\beta = \frac{r_t}{r_p}$$

Physical quantities extracted from light curve

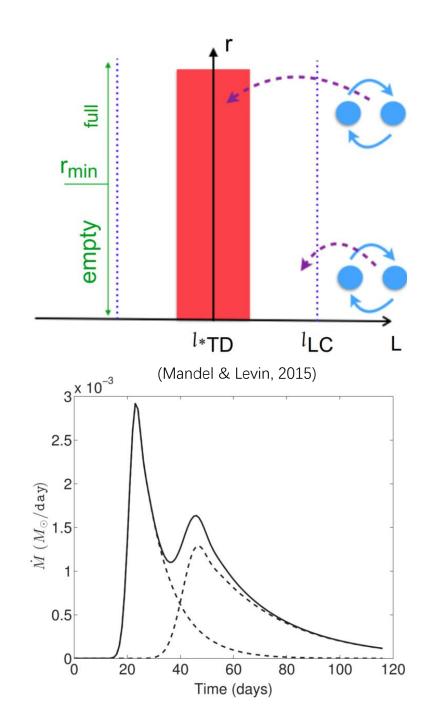

Physical model	Open source software	Input	Output	reference
Dynamical Blackbody Photosphere	MOSFiT	Multiband light curve	M_{BH} , m_* , $oldsymbol{eta}$, etc.	Mockler et al., 2019, ApJ, 872, 151
Classic Accretion Disk + Reprocessing Layer	TiDE	Multiband light curve	M_{BH} , m_* , $oldsymbol{eta}$, etc.	Kovács-Stermeczky & Vinkó, 2023, PASP, 135, 034102
Stream-stream collision	TDEMASS	L _p , T _p	M_{BH} , m_st	Ryu et al., 2020, ApJ, 904, 73 Krolik et al. arXiv:2409.02894
Eccentric Accretion Disk		L _p , E _{rad,tot}	M_{BH},m_*	Zhou et al., 2021, ApJ, 907, 77

These tools only handle single flare

Re-brightening TDEs

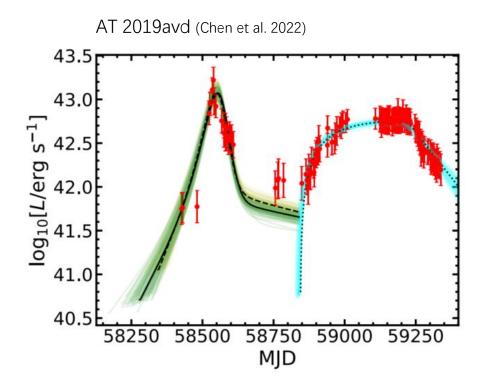
- Yao et al. (2023) published 30+ new TDEs, among which
 - 5 show re-brighten feature: 2019baf, 2019ehz, 2020acka, 2021uqv, 2020vdq(#)
- Other examples:
 - AT2018fyk (Wevers+2023; Pasham+2024)
 - AT2019aalc (Veres+2024)
 - AT2021aeuk (Bao+2024)
 - AT2022dbl (Lin+2024)
 - AT2023adr (AstroNote 2024-178)
 - and more shall show up...

Tidal Disruption Event Demographics with the Zwicky Transient Facility: Volumetric Rates, Luminosity Function, and Implications for the Local Black Hole Mass Function



Possible Origins

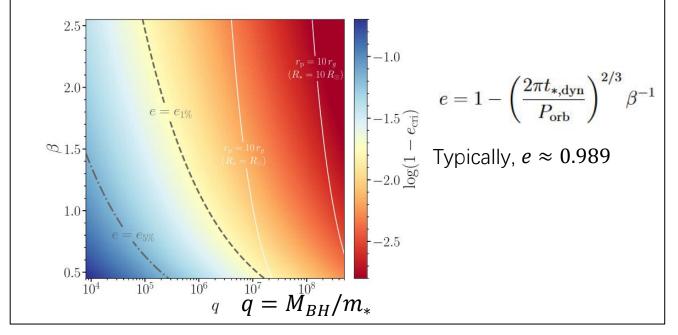
- Repeated partial TDEs (PTDEs) by a single star
 - AT 2020vdq (Somalwar et al. 2023)
 - AT 2022dbl (Lin et al. 2024)
 - ASASSN-14ko (Payne et al. 2021)

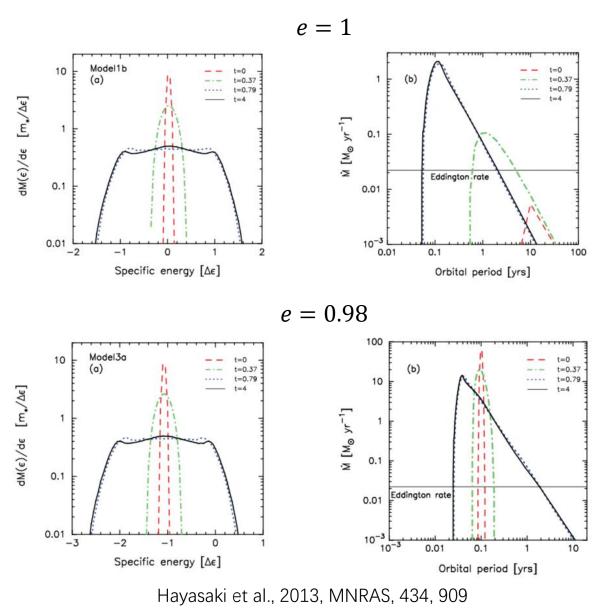

Possible Origins

- Repeated partial TDEs (PTDEs) by a single star
 - AT 2020vdq (Somalwar et al. 2023)
 - AT 2022dbl (Lin et al. 2024)
 - ASASSN-14ko (Payne et al. 2021)
- Double TDEs following the tidal break up of binary stars (Mandel & Levin, 2015)

Possible Origins

- Repeated partial TDEs (PTDEs) by a single star
 - AT 2020vdq (Somalwar et al. 2023)
 - AT 2022dbl (Lin et al. 2024)
 - ASASSN-14ko (Payne et al. 2021, 2023)
- Double TDEs followed by tidal break up of binary stars (Mandel & Levin, 2015)
- Single TDE with two-phase evolution (Chen+2022)
 - 1st flare powered by shocks: self-intersection & stream-disk (see also Bonnerot+2017)
 - 2nd flare powered by a delayed accretion

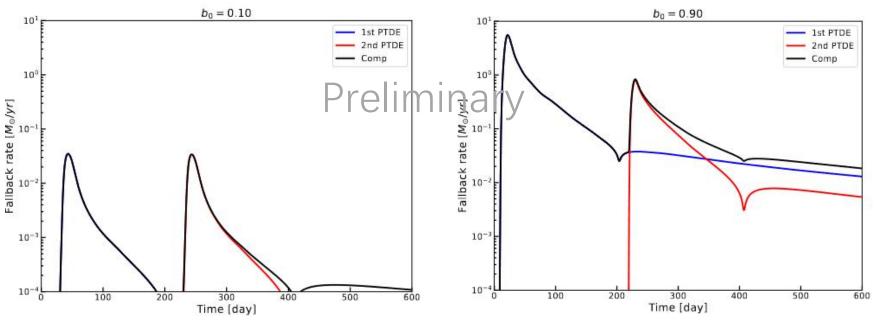



Issues of the existing fitting tools

- Assumes the star moves on parabolic orbit (e = 1)
- In the case of repeated PTDEs, e < 1
 - The debris mass distribution shall be modified (so do the fallback rate),

$$\frac{dm}{d\epsilon}(\epsilon) = \left(\frac{dm}{d\epsilon}\right)_{e=1} (\epsilon - \epsilon_{\rm orb}). \qquad \epsilon_{\rm orb} = -\frac{\beta(1-e)}{2}q^{1/3}\Delta\epsilon,$$

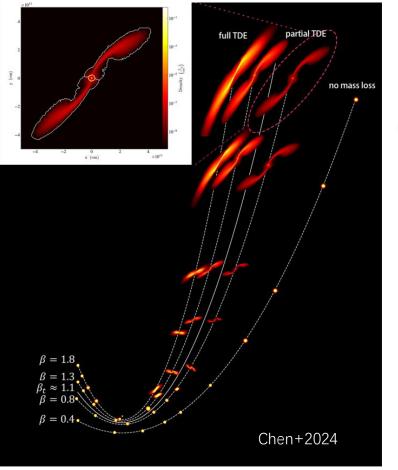
• Liu et al. (2023): the above treatment is valid, as long as $e>e_{1\%}$ (or even $e>e_{5\%}$ (≈ 0.95)

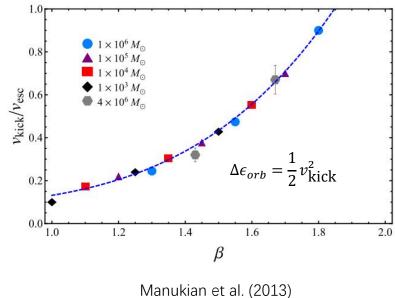


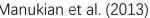
Liu+2023: https://doi.org/10.3847/1538-4357/acafe1

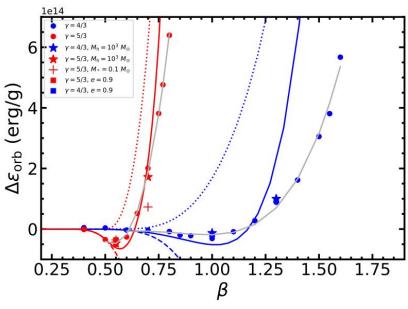
Issues of the existing fitting tools

- One could try fitting the two flares separately, with MOSFiT or TiDE.
- Can not accurately model the flare of the second PTDE
 - The second flare declines slower, due to the contribution from the first PTDE


 $b_0 = 0$, no disruption $b_0 = 1$, full disruption

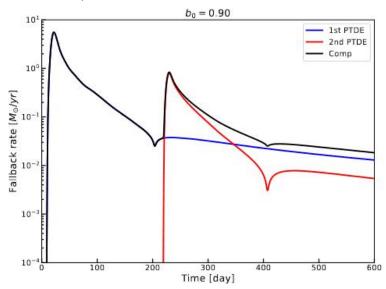

Example: fallback rates with different initial scaled penetration factor b_0 . (Zhong et al. *in prep*)


- $M_{BH}=10^6 M_{\odot}$, $m_{star}=1 M_{\odot}$, initial $P_{orb}=200$ days.
- ZAMS mass-radius relation

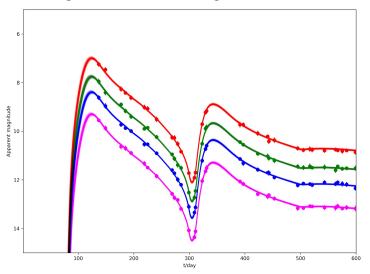

Orbital period and energy variation after PTDE

- The P_{orb} and ϵ_{orb} are crucial in determining the time of the second PTDE and its fallback rate.
- Variation of ϵ_{orb} is caused by the asymmetric mass loss through the two tidal tails:
 - Remnant star always gain orbital energy (Manukian+2013; Gafton+2015)
 - Remnant star may gain or lose orbital energy, depending on stellar structure and $oldsymbol{eta}$ (Ryu+2020; Chen+2024)

$$\Delta \epsilon_{\rm orb} = \begin{cases} 7.9\beta^4 - 19.2\beta^3 + 15.1\beta^2 - 3.94\beta + 0.0035, \gamma = 4/3\\ 121\beta^3 - 128\beta^2 + 32.8\beta + 0.0011, \gamma = 5/3\\ \times 10^{14} {\rm erg g}^{-1}, \end{cases}$$

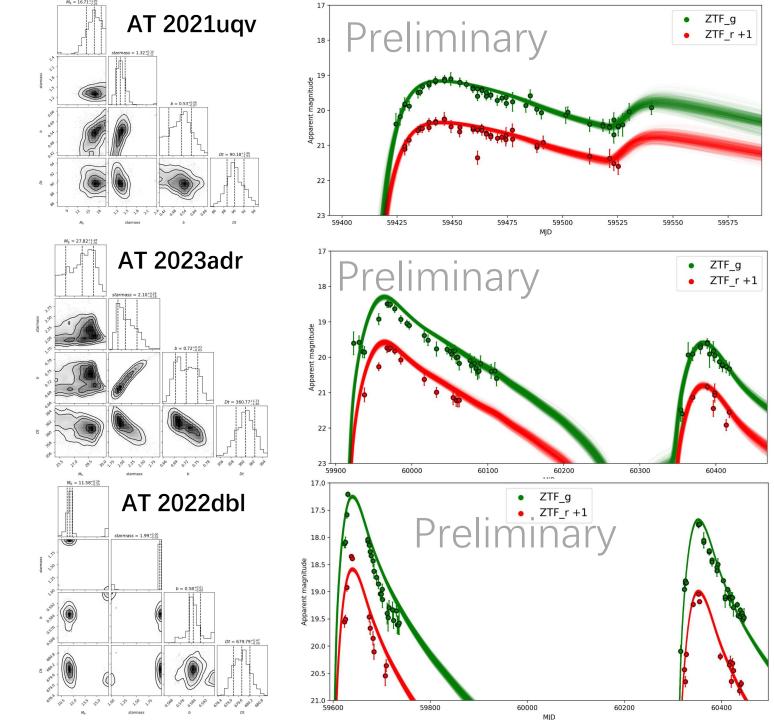

Goal: fit the two flares simultaneously

- Currently, the model only consists of two consecutive partial TDEs
- 1st step: construct composite mass fallback rate dM/dt
 - \checkmark Based on Guillochon & Ramirez-Ruiz (2013) fallback rates (e=1), modified for e<1 case
 - ✓ Variation of P_{orb} and ϵ_{orb} after every PTDE
- 2^{nd} step: convert dM/dt to multiband light curves in optical bands
 - √ dynamical photosphere model and black body SED (same as MOSFiT)

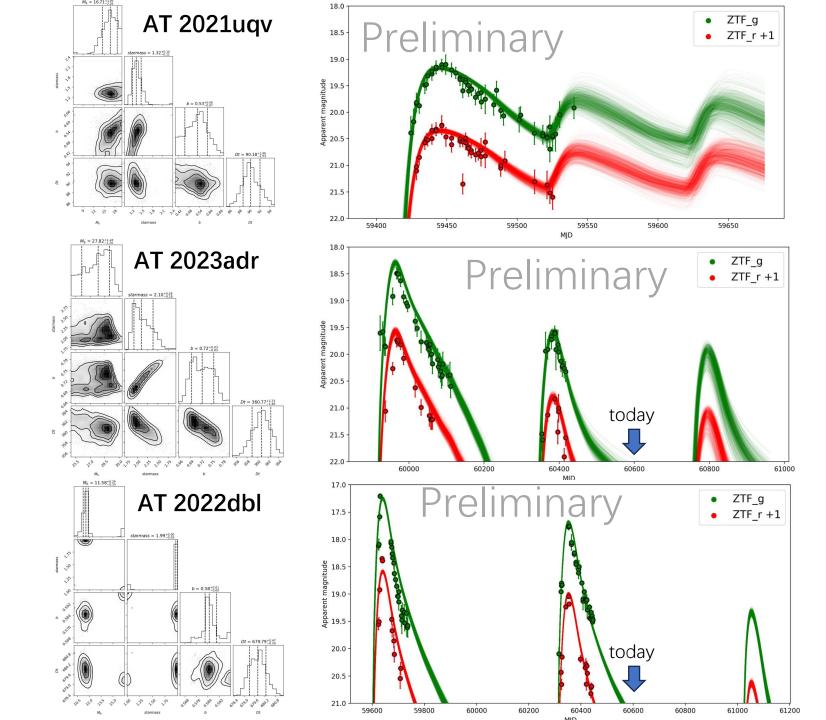

$$\begin{split} L_{bol} &= \eta \dot{M}c^2 \\ R_{ph} &= R_{ph0} a_{peak} (L_{bol}/L_{Edd})^l \\ T_{eff} &= \left(\frac{L_{bol}}{4\pi\sigma R_{ph}^2}\right)^{1/4} \end{split}$$

Light curve fitting: python package emcee

Composite fallback rate



Fitting test on a mock light curve


Apply to the rebrightening TDEs

 Example light curves retrieved from ALeRCE (https://alerce.online/), to test our model and fitting code.

Apply to the rebrightening TDEs

 Forecast the next flare: when and how bright

Summary

- Our model (based on repeating PTDEs scenario) could reproduce the light curves of some rebrightening TDEs
 - But not for AT 2020vdq (2nd flare is brighter)
- Aspects to be improved in future
 - Fallback rate: polytropic star realistic star
 - STARS library (Law-Smith et al. 2020)
 - tidally perturbed remnant star: spin up (Golightly+2019; Bandopadhyay+2024), oscillation and radial expansion (Liu+2024)
 - Add other optical/UV radiation model: disk + reprocessing layer, …
 - Black body SED \(\bigcirc\) realistic SED with emission lines

Thank you for your attention!