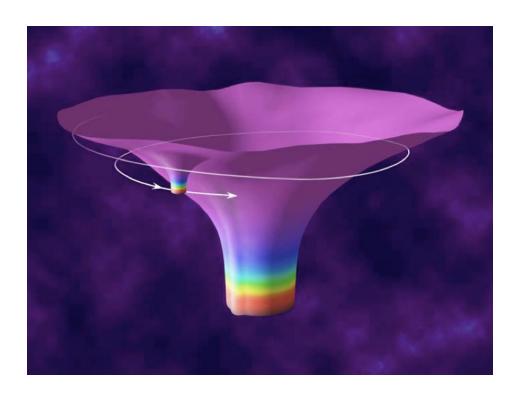

# Probing Astrophysical Environments of Massive Black Holes with Extreme Mass-Ratio Inspirals

Huan Yang Astronomy Department, Tsinghua University

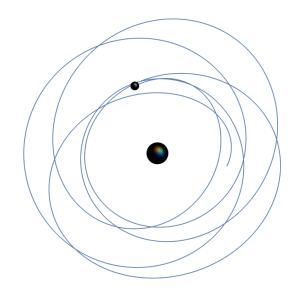
Collaborators: Ya-ping Li, Zhen Pan, Zhenwei Lyu, Jun Zhang, Beatrice Bonga, Scott Hughes

Transient Phenomena and Physical Processes Around Supermassive Black Holes, T. D. Lee Institute, Oct. 17, 2024,


# Space-based Gravitational Wave Detection (LISA/Taiji/Tianqin)

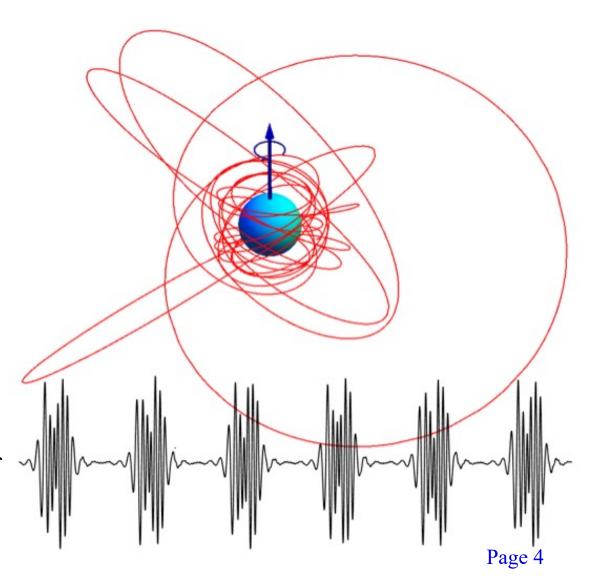


Page 1


# Extreme Mass Ratio Inspirals (EMRIs)

• Extreme mass-ratio inspirals: stellar-mass object (black holes, neutron stars, compact stars) orbiting around the massive black hole (10<sup>5</sup>-10<sup>7</sup> solar mass).




## **EMRI Dynamics**

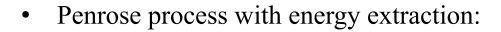
- A point particle moves along a geodesic of a rotating black hole spacetime: the motion is "separable" and periodic in  $(r,\theta,\varphi)$  directions, with different orbital frequencies  $(\omega_r,\omega_\theta,\omega_\varphi)$ .
- Gravitational waves carry away energy and angular momentum, so that the orbit slowly shrinks in time.
- A typical EMRI is in-band for 10<sup>4</sup>-10<sup>5</sup> cycles.



#### **EMRI Waveform**

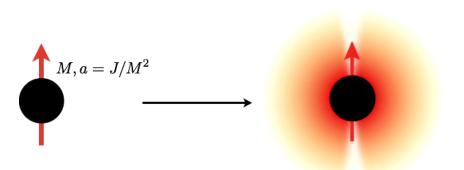
- $10^4$ - $10^5$  cycles in band means ~  $10^5$ - $10^6$  rad in the waveform phase.
- A "perturbation" of 10-6 in size may accumulate and generate
   1 rad phase change
- EMRI → ideal tool for measuring small perturbations: opportunities for studying astrophysics and fundamental physics
- Measurement uncertainty of eccentricity, spin, mass  $\sim 10^{-4}$   $10^{-6}$




#### Overview

- EMRIs with axion clouds around supermassive black holes
- EMRIs with close stellar objects
- Wet EMRIs: formation and motion within AGN disks

#### Overview


- EMRIs with axion clouds around supermassive black holes
- EMRIs with close stellar objects
- Wet EMRIs: formation and motion within AGN disks

# Black hole superradiance

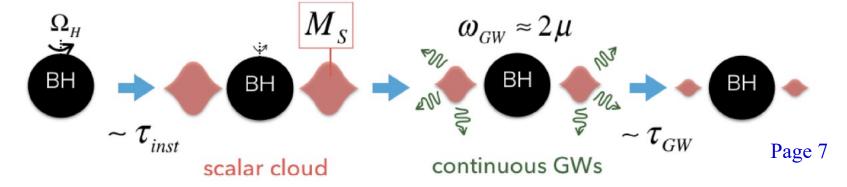


$$E_1 = E_2 + E_3, E_2 < 0$$
  
 $\to E_1 > E_3$ 

• Switch particle to fields: trapped fields with continuous extraction: superrdiance

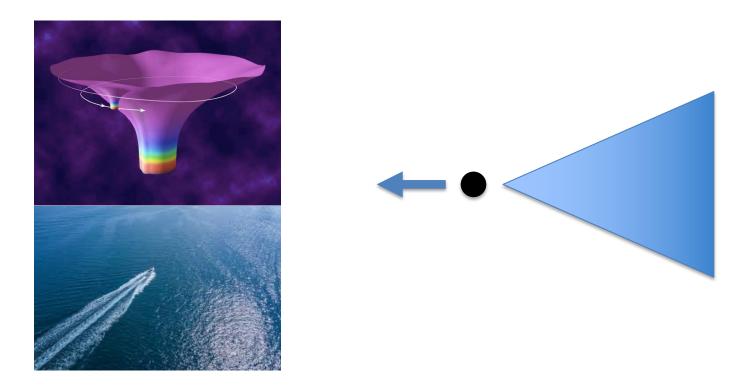


Penrose 1969 Press & Teukolsky 1972 Zouros & Eardley 1979 Detweiler 1980


**Event horizon** 

# Superradiant Cloud

- Superradiant process transfers black hole angular momentum to the axion cloud (Dark Matter Candidates), until  $\omega = m \Omega_H$
- Defining a dimensionless quantity  $\alpha \sim BH$  size/axion wavelength


$$\alpha \equiv \mu M \simeq 0.1 \left(\frac{M}{10 M_{\odot}}\right) \left(\frac{\mu}{10^{-12} \text{eV}}\right)$$

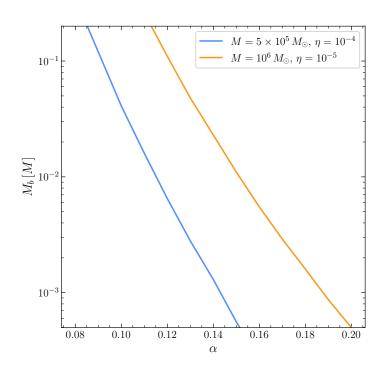
- Two relevant timescales:
  - Growth timescale  $\sim 12$  days  $(0.1/\alpha)^9 (M/10 M_{\odot})$
  - GW radiation decay timescale  $\sim 10^9$  years  $(0.1/\alpha)^{15}$  (M/10  $M_{\odot}$ )
- Cloud mass  $\sim \alpha$  M

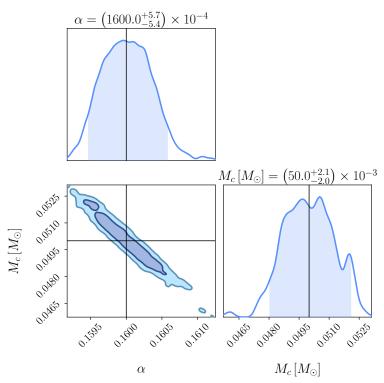


## Cloud interaction: extreme mass-ratio inspirals

Cloud exists for EMRIs (extreme mass-ratio inspirals, one of main sources of LISA).
 Main interaction: dynamical friction [Zhang, HY, PRD 2020], modified gravitational potential, modified gravitational wave flux.




# Detectable parameter range



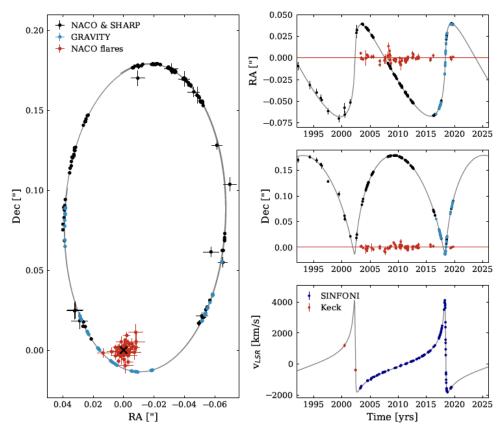

Zhang, HY, PRD 2020

# Implementation to the FEW for Parameter Estimation

- FastEMRIWaveform (FEW) is the most accurate EMRI waveform analysis code, which will likely be used for space-borne detectors (as developed by the LISA Consortium).
- We have developed the "environmental effect" model for FEW, including axions.






Page 10

#### Overview

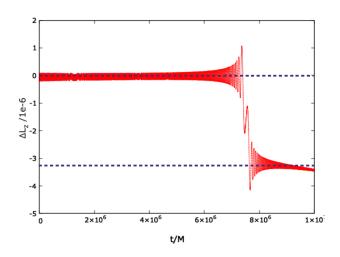
- EMRIs with axion clouds around supermassive black holes
- EMRIs with close stellar objects
- Wet EMRIs: formation and motion within AGN disks

## Close stars to Sgr A\*

• The observation of the S2 star in our galactic center has led to the identification of compact object (~4 million solar mass) in galactic center – a strong evidence for SMBH [Nobel Prize 2020, Ghez & Genzel]!



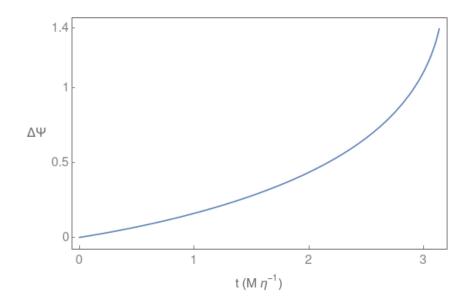
Measuring the GR precession by the GRAVITY Collaboration, 2020


# Directly probing the companion

• The presence of a stellar-mass companion generally adds an oscillatory force on the EMRI object — no long-term effect.

HY and M. Casals, PRD 2017

B. Bonga, HY and S. Hughes, PRL 2019

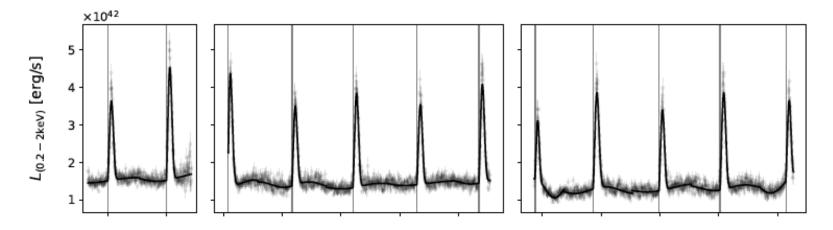

• Except at resonances the "extra" conservative forces can change the conserved quantities (i.e., modified Kerr metric). Sometimes there are chaotic behavior.



$$k\omega_{\theta} + n\omega_{r} + m\omega_{\phi} \approx 0$$

#### Tidal Resonance

• The "jump" of conserved quantities across a resonance will cause long-term shift of the gravitational wave phase. This can be used to detect the companion.




$$\begin{split} \Delta\Psi := & \int_0^{T_{\text{plunge}}} 2\Delta\omega_\phi dt \\ = & 1.4 \left(\frac{\mu}{10M_{\odot}}\right)^{-\frac{1}{2}} \left(\frac{M}{M_{\text{SgrA*}}}\right)^{\frac{7}{2}} \left(\frac{M_*}{10\,M_{\odot}}\right) \left(\frac{R}{4.3\,\text{AU}}\right)^{-3} \end{split}$$

O(100) gravitational radii!

## QPE and stellar-mass objects close to SMBH

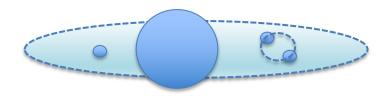
• One of the leading models for QPEs is the "TDE disk+EMRI" scenario [Linial & Metzger 2023]. The timing of X-ray flares can be used to infer the orbital radius of these EMRIs: O(100) gravitational radii! [Cong Zhou et al. 2024 ab]



• Arcodia et al 2024 predicts comparable QPE abundance v.s. LISA massive BHs.

Where do they come from?

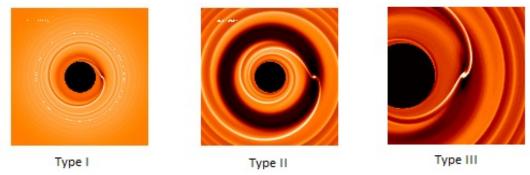
#### Overview


- EMRIs with axion clouds around supermassive black holes
- EMRIs with close stellar objects
- Wet EMRIs: formation and motion within AGN disks

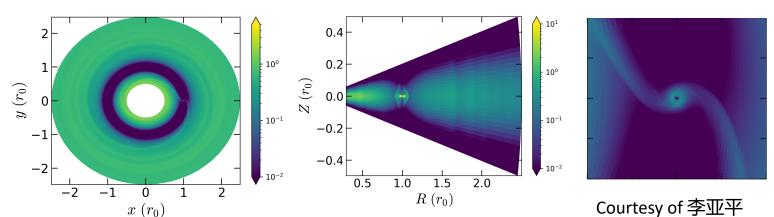
# Formation of EMRI systems

- Formation channels:
  - "Dry formation", which is mainly driven by multi-body scattering in the nuclear star cluster.
  - "Wet formation", which is assisted by the accretion flow around the massive black hole;




#### Wet Formation Channel

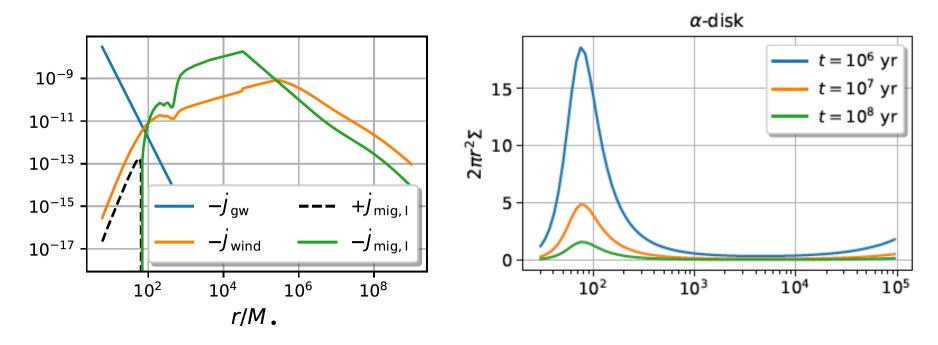



- The wet formation channel relies on the interaction between the accretion disk and the nuclear cluster around the supermassive black holes. The rate calculation requires consistent modelling for disk+cluster.
- Roughly 1% of local galaxies and 10% of high-redshift galaxies have AGNs. However, we will show that AGNs will dramatically accelerate EMRI formations.
- The sBHs trapped in accretion disk may form sBHBs a promising source for ground-based gravitational wave detection.

#### Disk forces

- The main sBH-disk interaction include density wave generation, head wind effect (BH absorption), feedback.
- The migration force/torque (density wave & corotation torques) is extensively studied in planetary systems. Likely similar things happen in AGN disks.

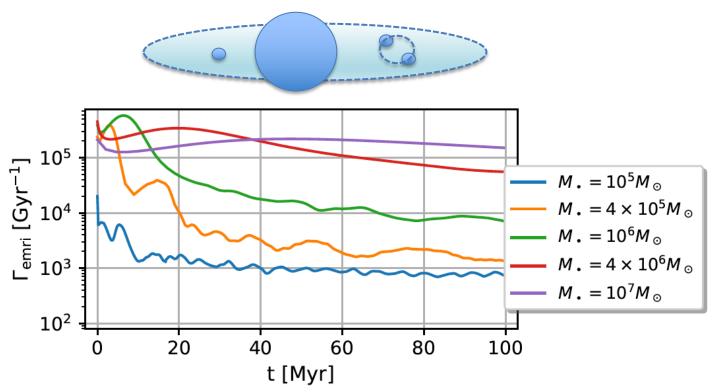



• Gravitationally capture of disk material (Bondi accretion). Material infall & circularize and form circum-single disk, eventually join the outflow or accrete onto the sBH.



Page 19

# Disk forces and stalling of sBHs


- The migration torque and the head-wind effect dominates for  $r > O(10^2)$  M, and at smaller radii the gravitational wave torque dominates.
- The migration is slow at the intersection accumulation of sBHs at  $O(10^2)$  M!



Z. Pan, HY, PRD 2021

Z. Pan, Z. Lyu, HY, PRD 2022

#### Wet Formation Rate



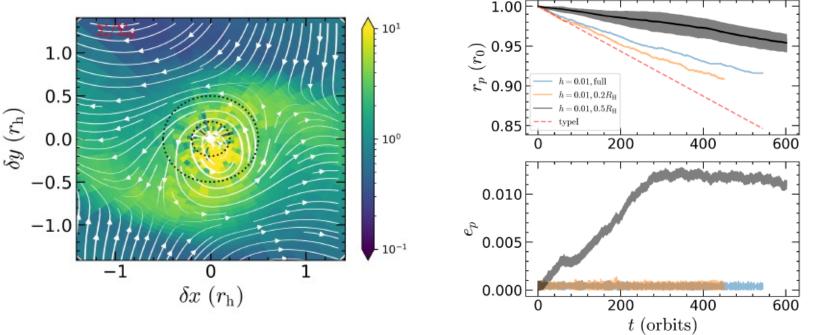
$$M_{ullet} = 4 imes 10^6 M_{\odot}, \ rac{\langle \Gamma_{
m disk} \rangle}{\langle \Gamma_{
m loss-cone} 
angle} = \mathcal{O}(10^2 - 10^3)$$

$$egin{aligned} M_{ullet} &= 1 imes 10^5 M_{\odot}, \ rac{\langle \Gamma_{
m disk} 
angle}{\langle \Gamma_{
m loss-cone} 
angle} &= \mathcal{O}(10^1 - 10^2) \end{aligned}$$

AGN fraction:

$$f_{\rm AGN}(z\lesssim 1)\sim 1\%$$

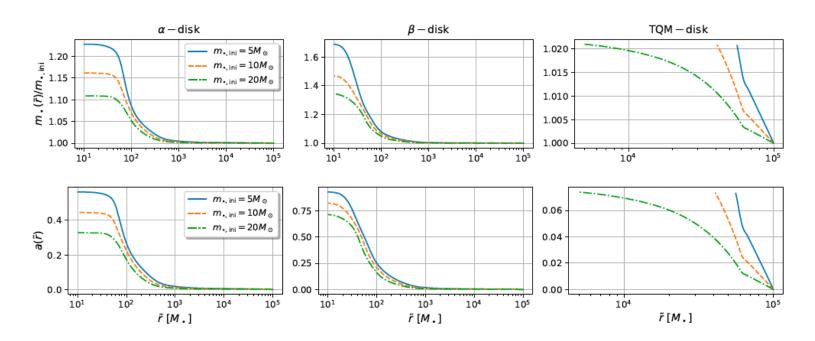
$$f_{\rm AGN}(z\gtrsim1)\sim1\%-10\%$$


# Comparison between Dry/Wet Formations

| Dry EMRIs | $f_{ullet}$                             | $N_p$            |                    |                      |                                                 |                | Total rate [yr <sup>-1</sup> ] | LISA detectable rate [yr <sup>-1</sup> ] |
|-----------|-----------------------------------------|------------------|--------------------|----------------------|-------------------------------------------------|----------------|--------------------------------|------------------------------------------|
|           | $f_{\bullet,-0.3}$                      | 0                |                    |                      |                                                 |                | 3500                           | 150                                      |
|           |                                         | 10               |                    |                      |                                                 |                | 1300                           | 120                                      |
|           |                                         | $10^{2}$         |                    |                      |                                                 |                | 150                            | 14                                       |
|           | $f_{\bullet,+0.3}$                      | 0                |                    |                      |                                                 |                | 160                            | 10                                       |
|           |                                         | 10               |                    |                      |                                                 |                | 130                            | 10                                       |
|           |                                         | $10^{2}$         |                    |                      |                                                 |                | 15                             | 1                                        |
| Wet EMRIs | f•                                      | $\mathbb{M}$ :   | $(\gamma, \delta)$ | $\mu_{\mathrm{cap}}$ | $(T_{\text{disk}} [\text{yr}], f_{\text{AGN}})$ | AGN Disk       | Total rate [yr <sup>-1</sup> ] | LISA detectable rate [yr <sup>-1</sup> ] |
|           | $f_{\bullet,-0.3}$                      | $M_1$ :          | (1.5, 0.001)       | 1                    | $(10^8, 1\%)$                                   | $\alpha$ -disk | 11000                          | 600                                      |
|           |                                         | $M_2$ :          | (1.5, 0.001)       | 0.1                  |                                                 |                | 11000                          | 760                                      |
|           |                                         | $M_3$ :          | (1.5, 0.002)       | 1                    |                                                 |                | 24000                          | 1500                                     |
|           |                                         | $M_4$ :          | (1.8, 0.001)       | 1                    |                                                 |                | 8100                           | 240                                      |
|           |                                         | $M_5$ :          | (1.5, 0.001)       | 1                    | $(10^8, 1\%)$                                   | TQM disk       | 23000                          | 1900                                     |
|           |                                         | $M_6$ :          | (1.5, 0.001)       | 1                    | $(10^7, 1\%)$                                   | $\alpha$ -disk | 39000                          | 4200                                     |
|           |                                         | $M_7$ :          | (1.5, 0.001)       | 0.1                  |                                                 |                | 21000                          | 3000                                     |
|           |                                         | $M_8$ :          | (1.5, 0.002)       | 1                    |                                                 |                | 80000                          | 9800                                     |
|           |                                         | $M_9$ :          | (1.8, 0.001)       | 1                    |                                                 |                | 22000                          | 1400                                     |
|           | $f_{\bullet,+0.3}$                      | $M_1$ :          | (1.5, 0.001)       | 1                    | $(10^8, 1\%)$                                   | $\alpha$ -disk | 2100                           | 49                                       |
|           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | $M_2$ :          | (1.5, 0.001)       | 0.1                  |                                                 |                | 2000                           | 57                                       |
|           |                                         | $M_3$ :          | (1.5, 0.002)       | 1                    |                                                 |                | 4300                           | 100                                      |
|           |                                         | M <sub>4</sub> : | (1.8, 0.001)       | 1                    |                                                 |                | 1900                           | 18                                       |

- Wet EMRIs may be at least as frequent as dry EMRIs.
- Wet EMRIs have e  $\sim$ 0, many dry EMRIs have e  $\leq$ =0.3 in the detection band
- LISA detection sensitivity on  $e \sim O(10^{-5})$

# Indirect probe using eccentricity

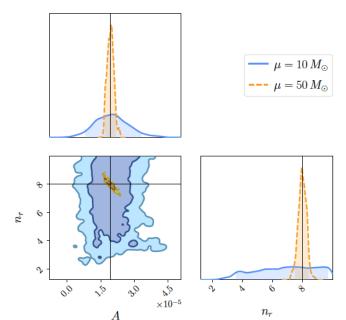

- Dry EMRIs tend to have O(0.1) eccentricity in band.
- Wet EMRIs should have negligible eccentricity, but how small should it be?
- Novel eccentricity excitation scheme (associated with density wave emission) when Hill radius is larger than the disk thickness, while the circum-single disks try to damp out the eccentricity [Y. Li, HY, Z. Pan, in preparation].



Page 23

# Indirect probe using mass and spin

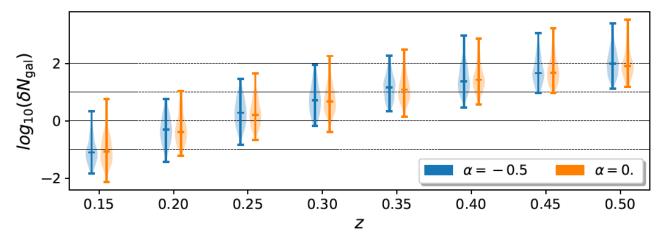
- sBHs embedded in AGNs will accrete: mass and spin change.
- Semi-analytical circum-single disk treatment: inflow-outflow model for supercritical accretion flows [Yuan et al. 2012].
- Mass and spin evolution [Pan, Yang, 2021]:




### Direct probe with GW observations

- In the LISA(Tianqin, Taiji) band, the disk migration torque is small compared with the GW torque. It also depends on the disk profile and the sBH mass.
- The GW phase due to disk interaction may be parametrized:

$$\dot{L}_{\text{mig}} = A \left(\frac{p}{10M}\right)^{n_r} \dot{L}_{PN}^{(0)} \qquad A \sim 7 \times 10^{-10} \left(\frac{0.1}{\alpha}\right) \left(\frac{f_{\text{Edd}}}{0.1} \frac{0.1}{\epsilon}\right)^{-3} \left(\frac{M}{10^6 M_{\odot}}\right)$$

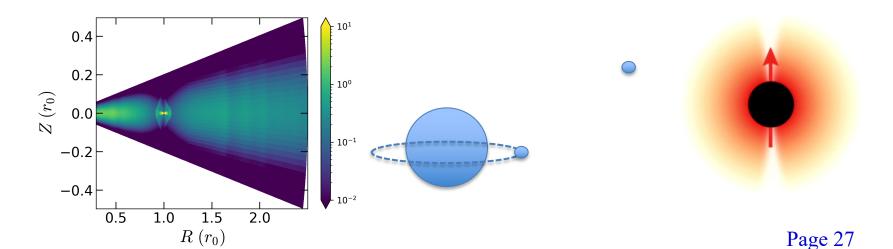

Parameter Estimation of GW observation may be used to infer disk properties.



Khalvati et al. HY, in preparation

## Multi-messenger Opportunities

- Wet EMRIs may be observed both by GWs and EM (radio, optical, etc.) signal.
  - Localization (galaxy identification) is possible for low-redshift EMRIs (z<0.5):




Pan & Yang, 2020

- Order of magnitude improvement with a network (LISA/Tianqin/Taiji)
- Science opportunities: testing disk/jet model, transient EM signal, Hubble constant measurement, etc

#### Conclusion

- EMRIs are likely a major component of LISA sources.
- They will be used to probe axion clouds around SMBHs, nearby stellar companion at the center of nuclear cluster.
- Wet EMRIs may form naturally in AGN disks. They may be a major formation channel for EMRIs for spaceborne detections.
- Indirect and Direct probes of wet EMRIs.

